Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Relationship Between Several Variants of the Linear Hashing Conjecture (2307.13016v5)

Published 24 Jul 2023 in cs.DS and cs.DM

Abstract: In Linear Hashing ($\mathsf{LH}$) with $\beta$ bins on a size $u$ universe ${\mathcal{U}={0,1,\ldots, u-1}}$, items ${x_1,x_2,\ldots, x_n}\subset \mathcal{U}$ are placed in bins by the hash function $$x_i\mapsto (ax_i+b)\mod p \mod \beta$$ for some prime $p\in [u,2u]$ and randomly chosen integers $a,b \in [1,p]$. The "maxload" of $\mathsf{LH}$ is the number of items assigned to the fullest bin. Expected maxload for a worst-case set of items is a natural measure of how well $\mathsf{LH}$ distributes items amongst the bins. Fix $\beta=n$. Despite $\mathsf{LH}$'s simplicity, bounding $\mathsf{LH}$'s worst-case maxload is extremely challenging. It is well-known that on random inputs $\mathsf{LH}$ achieves maxload $\Omega\left(\frac{\log n}{\log\log n}\right)$; this is currently the best lower bound for $\mathsf{LH}$'s expected maxload. Recently Knudsen established an upper bound of $\widetilde{O}(n{1 / 3})$. The question "Is the worst-case expected maxload of $\mathsf{LH}$ $n{o(1)}$?" is one of the most basic open problems in discrete math. In this paper we propose a set of intermediate open questions to help researchers make progress on this problem. We establish the relationship between these intermediate open questions and make some partial progress on them.

Summary

We haven't generated a summary for this paper yet.