Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Timely Target Tracking: Distributed Updating in Cognitive Radar Networks (2307.12936v4)

Published 24 Jul 2023 in eess.SY and cs.SY

Abstract: Cognitive radar networks (CRNs) are capable of optimizing operating parameters in order to provide actionable information to an operator or secondary system. CRNs have been proposed to answer the need for low-cost devices tracking potentially large numbers of targets in geographically diverse regions. Networks of small-scale devices have also been shown to outperform legacy, large scale, high price, single-device installations. In this work, we consider a CRN tracking multiple targets with a goal of providing information which is both fresh and accurate to a measurement fusion center (FC). We show that under a constraint on the update rate of each radar node, the network is able to utilize Age of Information (AoI) metrics to maximize the resource utilization and minimize error per track. Since information freshness is critical to decision-making, this structure enables a CRN to provide the highest-quality information possible to a downstream system or operator. We discuss centralized and distributed approaches to solving this problem, taking into account the quality of node observations, the maneuverability of each target, and a limit on the rate at which any node may provide updates to the FC. We present a centralized AoI-inspired node selection metric, where a FC requests updates from specific nodes. We compare this against several alternative techniques. Further, we provide a distributed approach which utilizes the Age of Incorrect Information (AoII) metric, allowing each independent node to provide updates according to the targets it can observe. We provide mathematical analysis of the rate limits defined for the centralized and distributed approaches, showing that they are equivalent. We conclude with numerical simulations demonstrating that the performance of the algorithms exceeds that of alternative approaches, both in resource utilization and in tracking performance.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. W. W. Howard, C. E. Thornton, and R. M. Buehrer, “Timely target tracking in cognitive radar networks,” in 2023 IEEE Radar Conference (RadarConf23), 2023, pp. 1–6.
  2. W. W. Howard, C. E. Thornton, A. F. Martone, and R. M. Buehrer, “Multi-player bandits for distributed cognitive radar,” in 2021 IEEE Radar Conference (RadarConf21).   IEEE, 2021, pp. 1–6.
  3. W. W. Howard, A. F. Martone, and R. M. Buehrer, “Distributed online learning for coexistence in cognitive radar networks,” IEEE Transactions on Aerospace and Electronic Systems, pp. 1–14, 2022.
  4. ——, “Adversarial multi-player bandits for cognitive radar networks,” in 2022 IEEE Radar Conference (RadarConf22).   IEEE, 2022, pp. 1–6.
  5. W. W. Howard and R. M. Buehrer, “Hybrid cognition for target tracking in cognitive radar networks,” IEEE Transactions on Radar Systems, vol. 1, pp. 118–131, 2023.
  6. ——, “Decentralized bandits with feedback for cognitive radar networks,” in MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM), 2022, pp. 717–722.
  7. S. Haykin, “Cognitive radar networks,” in Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006., 2006, pp. 1–24.
  8. A. F. Martone, K. D. Sherbondy, J. A. Kovarskiy, B. H. Kirk, R. M. Narayanan, C. E. Thornton, R. M. Buehrer, J. W. Owen, B. Ravenscroft, S. Blunt, A. Egbert, A. Goad, and C. Baylis, “Closing the loop on cognitive radar for spectrum sharing,” IEEE Aerospace and Electronic Systems Magazine, vol. 36, no. 9, pp. 44–55, 2021.
  9. S. Haykin, “Cognitive dynamic systems: Radar, Control, and Radio [point of view],” Proceedings of the IEEE, vol. 100, no. 7, pp. 2095–2103, 2012.
  10. A. F. Martone, “Cognitive radar demystified,” URSI Radio Science Bulletin, vol. 2014, no. 350, pp. 10–22, 2014.
  11. J. Yan, W. Pu, S. Zhou, H. Liu, and Z. Bao, “Collaborative detection and power allocation framework for target tracking in multiple radar system,” Information Fusion, vol. 55, pp. 173–183, 2020.
  12. J. Yan, W. Pu, S. Zhou, H. Liu, and M. S. Greco, “Optimal resource allocation for asynchronous multiple targets tracking in heterogeneous radar networks,” IEEE Transactions on Signal Processing, vol. 68, pp. 4055–4068, 2020.
  13. J. Yan, H. Jiao, W. Pu, C. Shi, J. Dai, and H. Liu, “Radar sensor network resource allocation for fused target tracking: A brief review,” Information Fusion, vol. 86-87, pp. 104–115, 2022.
  14. F. Zhao, J. Shin, and J. Reich, “Information-driven dynamic sensor collaboration,” IEEE Signal Processing Magazine, vol. 19, no. 2, pp. 61–72, 2002.
  15. J. Liu, M. Chu, and J. E. Reich, “Multitarget tracking in distributed sensor networks,” IEEE Signal Processing Magazine, vol. 24, no. 3, pp. 36–46, 2007.
  16. A. Maatouk, S. Kriouile, M. Assaad, and A. Ephremides, “The age of incorrect information: A new performance metric for status updates,” IEEE/ACM Transactions on Networking, vol. 28, no. 5, pp. 2215–2228, 2020.
  17. S. Haykin, Y. Xue, and T. N. Davidson, “Optimal waveform design for cognitive radar,” in 2008 42nd Asilomar Conference on Signals, Systems and Computers, 2008, pp. 3–7.
  18. C. E. Thornton, R. M. Buehrer, and A. F. Martone, “Efficient online learning for cognitive radar-cellular coexistence via contextual thompson sampling,” in GLOBECOM 2020 - 2020 IEEE Global Communications Conference, 2020, pp. 1–6.
  19. B. H. Kirk, J. W. Owen, R. M. Narayanan, S. D. Blunt, A. F. Martone, and K. D. Sherbondy, “Cognitive software defined radar: waveform design for clutter and interference suppression,” in Radar Sensor Technology XXI, vol. 10188.   SPIE, 2017, pp. 446–461.
  20. C. E. Thornton, R. M. Buehrer, H. S. Dhillon, and A. F. Martone, “Universal learning waveform selection strategies for adaptive target tracking,” IEEE Transactions on Aerospace and Electronic Systems, pp. 1–17, 2022.
  21. B. H. Kirk, R. M. Narayanan, K. A. Gallagher, A. F. Martone, and K. D. Sherbondy, “Avoidance of time-varying radio frequency interference with software-defined cognitive radar,” IEEE Transactions on Aerospace and Electronic Systems, vol. 55, no. 3, pp. 1090–1107, 2018.
  22. B. Ravenscroft, J. W. Owen, J. Jakabosky, S. D. Blunt, A. F. Martone, and K. D. Sherbondy, “Experimental demonstration and analysis of cognitive spectrum sensing and notching for radar,” IET Radar, Sonar & Navigation, vol. 12, no. 12, pp. 1466–1475, 2018.
  23. J. A. Kovarskiy, J. W. Owen, R. M. Narayanan, S. D. Blunt, A. F. Martone, and K. D. Sherbondy, “Spectral prediction and notching of RF emitters for cognitive radar coexistence,” in 2020 IEEE International Radar Conference (RADAR).   IEEE, 2020, pp. 61–66.
  24. A. Martone, K. Gallagher, K. Sherbondy, A. Hedden, and C. Dietlein, “Adaptable waveform design for enhanced detection of moving targets,” IET Radar, Sonar & Navigation, vol. 11, no. 10, pp. 1567–1573, 2017.
  25. C. E. Thornton, W. W. Howard, and R. M. Buehrer, “Online learning-based waveform selection for improved vehicle recognition in automotive radar,” in ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023, pp. 1–5.
  26. J. Yan, B. Jiu, H. Liu, B. Chen, and Z. Bao, “Prior knowledge-based simultaneous multibeam power allocation algorithm for cognitive multiple targets tracking in clutter,” IEEE Transactions on Signal Processing, vol. 63, no. 2, pp. 512–527, 2015.
  27. J. Yan, H. Liu, B. Jiu, B. Chen, Z. Liu, and Z. Bao, “Simultaneous multibeam resource allocation scheme for multiple target tracking,” IEEE Transactions on Signal Processing, vol. 63, no. 12, pp. 3110–3122, 2015.
  28. A. F. Martone, K. D. Sherbondy, J. A. Kovarskiy, B. H. Kirk, C. E. Thornton, J. W. Owen, B. Ravenscroft, A. Egbert, A. Goad, A. Dockendorf, R. M. Buehrer, R. M. Narayanan, S. D. Blunt, and C. Baylis, “Metacognition for radar coexistence,” in 2020 IEEE International Radar Conference (RADAR), 2020, pp. 55–60.
  29. T. D. Ridder, A. F. Martone, B. H. Kirk, and R. M. Narayanan, “Multiple criteria operational reliability performance metric of a metacognitive tracking radar,” IEEE Transactions on Aerospace and Electronic Systems, pp. 1–10, 2023.
  30. C. Thornton and R. Buehrer, “When is cognitive radar beneficial? Insights from dynamic spectrum access,” in 2023 IEEE Radar Conference (RadarConf23), 2023, pp. 1–6.
  31. B. Ristic, B.-N. Vo, D. Clark, and B.-T. Vo, “A metric for performance evaluation of multi-target tracking algorithms,” IEEE Transactions on Signal Processing, vol. 59, no. 7, pp. 3452–3457, 2011.
  32. R. Mahler, “Phd filters of higher order in target number,” IEEE Transactions on Aerospace and Electronic Systems, vol. 43, no. 4, pp. 1523–1543, 2007.
  33. ——, “Multitarget bayes filtering via first-order multitarget moments,” IEEE Transactions on Aerospace and Electronic Systems, vol. 39, no. 4, pp. 1152–1178, 2003.
  34. R. P. S. Mahler, B.-T. Vo, and B.-N. Vo, “Cphd filtering with unknown clutter rate and detection profile,” IEEE Transactions on Signal Processing, vol. 59, no. 8, pp. 3497–3513, 2011.
  35. K. Panta, D. E. Clark, and B.-N. Vo, “Data association and track management for the gaussian mixture probability hypothesis density filter,” IEEE Transactions on Aerospace and Electronic Systems, vol. 45, no. 3, pp. 1003–1016, 2009.
  36. B.-N. Vo and W.-K. Ma, “The gaussian mixture probability hypothesis density filter,” IEEE Transactions on Signal Processing, vol. 54, no. 11, pp. 4091–4104, 2006.
  37. S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should one update?” in 2012 Proceedings IEEE INFOCOM, 2012, pp. 2731–2735.
  38. R. D. Yates, Y. Sun, D. R. Brown, S. K. Kaul, E. Modiano, and S. Ulukus, “Age of information: An introduction and survey,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 5, pp. 1183–1210, 2021.
  39. M. A. Abd-Elmagid and H. S. Dhillon, “Average peak age-of-information minimization in UAV-assisted IoT networks,” IEEE Transactions on Vehicular Technology, vol. 68, no. 2, pp. 2003–2008, 2019.
  40. I. Krikidis, “Average age of information in wireless powered sensor networks,” IEEE Wireless Communications Letters, vol. 8, no. 2, pp. 628–631, 2019.
  41. R. D. Yates and S. Kaul, “Real-time status updating: Multiple sources,” in 2012 IEEE International Symposium on Information Theory Proceedings, 2012, pp. 2666–2670.
  42. S. Kriouile and M. Assaad, “Minimizing the age of incorrect information for real-time tracking of markov remote sources,” in 2021 IEEE International Symposium on Information Theory (ISIT), 2021, pp. 2978–2983.
  43. C. Kam, S. Kompella, and A. Ephremides, “Age of incorrect information for remote estimation of a binary markov source,” in IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2020, pp. 1–6.
  44. A. F. García-Fernández, J. L. Williams, K. Granström, and L. Svensson, “Poisson multi-bernoulli mixture filter: Direct derivation and implementation,” IEEE Transactions on Aerospace and Electronic Systems, vol. 54, no. 4, pp. 1883–1901, 2018.
  45. B. Li, Z. Gan, D. Chen, and D. Sergey Aleksandrovich, “UAV maneuvering target tracking in uncertain environments based on deep reinforcement learning and meta-learning,” Remote Sensing, vol. 12, no. 22, 2020.
  46. P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the multiarmed bandit problem,” Machine Learning, vol. 47, pp. 235–256, 05 2002.
Citations (3)

Summary

We haven't generated a summary for this paper yet.