Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Comprehending Semantic Types in JSON Data with Graph Neural Networks (2307.12807v1)

Published 24 Jul 2023 in cs.DB and cs.AI

Abstract: Semantic types are a more powerful and detailed way of describing data than atomic types such as strings or integers. They establish connections between columns and concepts from the real world, providing more nuanced and fine-grained information that can be useful for tasks such as automated data cleaning, schema matching, and data discovery. Existing deep learning models trained on large text corpora have been successful at performing single-column semantic type prediction for relational data. However, in this work, we propose an extension of the semantic type prediction problem to JSON data, labeling the types based on JSON Paths. Similar to columns in relational data, JSON Path is a query language that enables the navigation of complex JSON data structures by specifying the location and content of the elements. We use a graph neural network to comprehend the structural information within collections of JSON documents. Our model outperforms a state-of-the-art existing model in several cases. These results demonstrate the ability of our model to understand complex JSON data and its potential usage for JSON-related data processing tasks.

Summary

We haven't generated a summary for this paper yet.