Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Faster Algorithms for Bounded Knapsack and Bounded Subset Sum Via Fine-Grained Proximity Results (2307.12582v2)

Published 24 Jul 2023 in cs.DS

Abstract: We investigate pseudopolynomial-time algorithms for Bounded Knapsack and Bounded Subset Sum. Recent years have seen a growing interest in settling their fine-grained complexity with respect to various parameters. For Bounded Knapsack, the number of items $n$ and the maximum item weight $w_{\max}$ are two of the most natural parameters that have been studied extensively in the literature. The previous best running time in terms of $n$ and $w_{\max}$ is $O(n + w3_{\max})$ [Polak, Rohwedder, Wegrzycki '21]. There is a conditional lower bound of $O((n + w_{\max}){2-o(1)})$ based on $(\min,+)$-convolution hypothesis [Cygan, Mucha, Wegrzycki, Wlodarczyk '17]. We narrow the gap significantly by proposing a $\tilde{O}(n + w{12/5}_{\max})$-time algorithm. Note that in the regime where $w_{\max} \approx n$, our algorithm runs in $\tilde{O}(n{12/5})$ time, while all the previous algorithms require $\Omega(n3)$ time in the worst case. For Bounded Subset Sum, we give two algorithms running in $\tilde{O}(nw_{\max})$ and $\tilde{O}(n + w{3/2}_{\max})$ time, respectively. These results match the currently best running time for 0-1 Subset Sum. Prior to our work, the best running times (in terms of $n$ and $w_{\max}$) for Bounded Subset Sum is $\tilde{O}(n + w{5/3}_{\max})$ [Polak, Rohwedder, Wegrzycki '21] and $\tilde{O}(n + \mu_{\max}{1/2}w_{\max}{3/2})$ [implied by Bringmann '19 and Bringmann, Wellnitz '21], where $\mu_{\max}$ refers to the maximum multiplicity of item weights.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. SETH-based Lower Bounds for Subset Sum and Bicriteria Path. ACM Transactions on Algorithms, 18(1):1–22, January 2022. doi:10.1145/3450524.
  2. Geometric applications of a matrix-searching algorithm. Algorithmica, 2(1):195–208, 1987. doi:10.1007/BF01840359.
  3. Capacitated Dynamic Programming: Faster Knapsack and Graph Algorithms. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019), volume 132, pages 19:1–19:13, Dagstuhl, Germany, 2019. doi:10.4230/LIPIcs.ICALP.2019.19.
  4. Fast algorithms for knapsack via convolution and prediction. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing (STOC 2018), pages 1269–1282, New York, NY, USA, June 2018. doi:10.1145/3188745.3188876.
  5. Richard Bellman. Dynamic Programming, volume 33. Princeton University Press, 1957. arXiv:j.ctv1nxcw0f, doi:10.2307/j.ctv1nxcw0f.
  6. Karl Bringmann. A Near-Linear Pseudopolynomial Time Algorithm for Subset Sum. In Proceedings of the 2017 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2017), pages 1073–1084, January 2017. doi:10.1137/1.9781611974782.69.
  7. Karl Bringmann. Knapsack with small items in near-quadratic time, 2023. arXiv:2308.03075.
  8. Faster Knapsack Algorithms via Bounded Monotone Min-Plus-Convolution. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022), volume 229, pages 31:1–31:21, Dagstuhl, Germany, 2022. doi:10.4230/LIPIcs.ICALP.2022.31.
  9. Faster 0-1-Knapsack via Near-Convex Min-Plus-Convolution. In 31st Annual European Symposium on Algorithms (ESA 2023), volume 274, pages 24:1–24:16, Dagstuhl, Germany, 2023. doi:10.4230/LIPIcs.ESA.2023.24.
  10. A fine-grained perspective on approximating subset sum and partition. In Proceedings of the 2021 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2021), pages 1797–1815. SIAM, 2021.
  11. On Near-Linear-Time Algorithms for Dense Subset Sum. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA 2021), pages 1777–1796, January 2021. doi:10.1137/1.9781611976465.107.
  12. Timothy M. Chan. Approximation Schemes for 0-1 Knapsack. In 1st Symposium on Simplicity in Algorithms (SOSA 2018), volume 61, pages 5:1–5:12, Dagstuhl, Germany, 2018. doi:10.4230/OASIcs.SOSA.2018.5.
  13. More on change-making and related problems. Journal of Computer and System Sciences, 124:159–169, 2022. doi:10.1016/j.jcss.2021.09.005.
  14. On problems equivalent to (min,+)-convolution. ACM Transactions on Algorithms, 15(1):1–25, January 2019. doi:10.1145/3293465.
  15. Approximating Knapsack and Partition via Dense Subset Sums. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2023), Proceedings, pages 2961–2979, January 2023. doi:10.1137/1.9781611977554.ch113.
  16. Proximity Results and Faster Algorithms for Integer Programming Using the Steinitz Lemma. ACM Transactions on Algorithms, 16(1):5:1–5:14, November 2019. doi:10.1145/3340322.
  17. An Almost Linear-Time Algorithm for the Dense Subset-Sum Problem. SIAM Journal on Computing, 20(6):1157–1189, December 1991. doi:10.1137/0220072.
  18. On Integer Programming and Convolution. In 10th Innovations in Theoretical Computer Science Conference (ITCS 2019), 2019. doi:10.4230/LIPIcs.ITCS.2019.43.
  19. Ce Jin. 0-1 knapsack in nearly quadratic time, 2023. arXiv:2308.04093.
  20. Ce Jin and Hongxun Wu. A Simple Near-Linear Pseudopolynomial Time Randomized Algorithm for Subset Sum. In 2nd Symposium on Simplicity in Algorithms (SOSA 2019), volume 69, pages 17:1–17:6, Dagstuhl, Germany, 2018. doi:10.4230/OASIcs.SOSA.2019.17.
  21. Improved Dynamic Programming in Connection with an FPTAS for the Knapsack Problem. Journal of Combinatorial Optimization, 8(1):5–11, March 2004. doi:10.1023/B:JOCO.0000021934.29833.6b.
  22. Faster Pseudopolynomial Time Algorithms for Subset Sum. ACM Transactions on Algorithms, 15(3):1–20, July 2019. doi:10.1145/3329863.
  23. On the Fine-Grained Complexity of One-Dimensional Dynamic Programming. In 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017), volume 80, pages 21:1–21:15, 2017. doi:10.4230/LIPIcs.ICALP.2017.21.
  24. Vsevolod F. Lev. Blocks and progressions in subset sum sets. Acta Arithmetica, 106(2):123–142, 2003. doi:10.4064/aa106-2-3.
  25. David Pisinger. Linear Time Algorithms for Knapsack Problems with Bounded Weights. Journal of Algorithms, 33(1):1–14, October 1999. doi:10.1006/jagm.1999.1034.
  26. Knapsack and Subset Sum with Small Items. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021), volume 198, pages 106:1–106:19, Dagstuhl, Germany, 2021. doi:10.4230/LIPIcs.ICALP.2021.106.
  27. A. Sárközy. Fine Addition Theorems, II. Journal of Number Theory, 48(2):197–218, August 1994. doi:10.1006/jnth.1994.1062.
  28. Arie Tamir. New pseudopolynomial complexity bounds for the bounded and other integer Knapsack related problems. Operations Research Letters, 37(5):303–306, 2009. doi:10.1016/j.orl.2009.05.003.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Lin Chen (384 papers)
  2. Jiayi Lian (10 papers)
  3. Yuchen Mao (19 papers)
  4. Guochuan Zhang (22 papers)
Citations (15)

Summary

We haven't generated a summary for this paper yet.