Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A monolithic space-time temporal multirate finite element framework for interface and volume coupled problems (2307.12455v2)

Published 23 Jul 2023 in math.NA and cs.NA

Abstract: In this work, we propose and computationally investigate a monolithic space-time multirate scheme for coupled problems. The novelty lies in the monolithic formulation of the multirate approach as this requires a careful design of the functional framework, corresponding discretization, and implementation. Our method of choice is a tensor-product Galerkin space-time discretization. The developments are carried out for both prototype interface- and volume coupled problems such as coupled wave-heat-problems and a displacement equation coupled to Darcy flow in a poro-elastic medium. The latter is applied to the well-known Mandel's benchmark and a three-dimensional footing problem. Detailed computational investigations and convergence analyses give evidence that our monolithic multirate framework performs well.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (66)
  1. Mandel’s problem revisited. Geotechnique, 46:187–195, 1996.
  2. R. Aiken. Stiff Computation. Oxford University Press, 1985.
  3. T. Almani. Efficient Algorithms for Flow Models Coupled with Geomechanics for porous Media. PhD thesis, University of Texas at Austin, 2016.
  4. Convergence analysis of multirate fixed-stress split iterative schemes for coupling flow with geomechanics. Computer Methods in Applied Mechanics and Engineering, 311:180–207, 2016.
  5. Stability of multirate explicit coupling of geomechanics with flow in a poroelastic medium. Computers & Mathematics with Applications, 78(8):2682–2699, 2019.
  6. Multirate Coupling for Flow and Geomechanics Applied to Hydraulic Fracturing Using an Adaptive Phase-Field Technique. SPE Reservoir Simulation Conference, Day 3 Wed, February 22, 2017, 2017.
  7. The FEniCS Project Version 1.5. Archive of Numerical Software, Vol 3, 2015.
  8. The deal.II finite element library: Design, features, and insights. Comput. Math. Appl., 81:407–422, 2021.
  9. The deal.II library, version 9.4. J. Numer. Math., 30(3):231–246, 2022.
  10. Adaptive Galerkin finite element methods for the wave equation. Comput. Methods Appl. Math., 10:3–48, 2010.
  11. Space–time finite element approximation of the biot poroelasticity system with iterative coupling. Comput. Methods Appl. Mech. Engrg., 320:745–768, 2017.
  12. Computational Fluid-Structure Interaction: Methods and Applications. Wiley, 2013.
  13. R. Becker and R. Rannacher. An optimal control approach to a posteriori error estimation in finite element methods. Acta Numerica, Cambridge University Press, pages 1–102, 2001.
  14. M. Biot. Consolidation settlement under a rectangular load distribution. J. Appl. Phys., 12(5):426–430, 1941.
  15. M. Biot. General theory of three-dimensional consolidation. J. Appl. Phys., 12(2):155–164, 1941.
  16. M. Biot. Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys., 25:182–185, 1955.
  17. M. Biot. Theory of finite deformations of porous solids. Indiana Univ. Math. J., 21:597–620, 1971/72.
  18. A partially parallel-in-time fixed-stress splitting method for biot’s consolidation model. Computers & Mathematics with Applications, 77(6):1466–1478, 2019. 7th International Conference on Advanced Computational Methods in Engineering (ACOMEN 2017).
  19. On the Implementation of an Adaptive Multirate Framework for Coupled Transport and Flow. J. Sci. Comput., 93(59):1–29, 2022.
  20. A. H.-D. Cheng. A direct boundary element method for plane strain poroelasticity. Int. J. Numer. Anal. Meth. Geomech., 12:551–572, 1988.
  21. O. Coussy. Poromechanics. Wiley, 2004.
  22. C. Cryer. A comparison of the three-dimensional consolidation theories of biot and terzaghi. Q. J. Mech. Appl. Math., 16:401–412, 1663.
  23. T. A. Davis. Algorithm 832: Umfpack v4.3—an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw., 30(2):196–199, jun 2004.
  24. A Comparison of Techniques for Coupling Porous Flow and Geomechanics. SPE Journal, 11(01):132–140, 03 2006.
  25. Discontinuous Galerkin methods for ordinary differential equations. Math. Comp., 36:455–473, 1981.
  26. W. Dörfler and C. Wieners. Space-time approximations for linear acoustic, elastic, and electro-magnetic wave equations. Lectures Notes for the MFO seminar on wave phenomena, January 2022.
  27. MORe DWR: Space-time goal-oriented error control for incremental POD-based ROM, 2023, https://doi.org/10.48550/ARXIV.2304.01140.
  28. X. Gai. A Coupled Geomechanics and Reservoir Flow Model on Parallel Computers. Doctoral Thesis, University of Texas at Austin, 2004.
  29. Distributive smoothers in multigrid for problems with dominating grad–div operators. Numer. Linear Algebra Appl., 15(8):661–683, 2008.
  30. F. Gazzola and M. Squassina. Global solutions and finite time blow up for damped semilinear wave equations. Ann. I. H. Poincaré, 23:185–207, 2006.
  31. Domain decomposition for Poroelasticity and Elasticity with DG jumps and mortars. Mathematical Models and Methods in Applied Sciences, 21, 10 2011.
  32. H. A. F. Guzman. Domain Decomposition Methods in Geomechanics. Doctoral Thesis, University of Texas at Austin, 2012.
  33. E. Hairer and G. Wanner. Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, volume 14 of Series in Comput. Math. Springer Verlag, 01 1996.
  34. Space-time finite element methods for elastodynamics: Formulations and error estimates. Comput. Methods Appl. Mech. Engrg., 66(3):339 – 363, 1988.
  35. A phase-field multirate scheme with stabilized iterative coupling for pressure driven fracture propagation in porous media. Computers & Mathematics with Applications, 91:176–191, 2021. Robust and Reliable Finite Element Methods in Poromechanics.
  36. J. Jansson and A. Logg. Algorithms and data structures for multi-adaptive time-stepping. ACM Trans. Math. Softw., 35(3), oct 2008.
  37. C. Johnson. Error estimates and adaptive time-step control for a class of one-step methods for stiff ordinary differential equations. SIAM J. Numer. Anal., 25(4):908–926, 1988.
  38. C. Johnson. Discontinuous galerkin finite element methods for second order hyperbolic problems. Comput. Methods Appl. Mech. Engrg., 107(1):117–129, 1993.
  39. U. Langer and O. Steinbach, editors. Space-time methods: Application to Partial Differential Equations. volume 25 of Radon Series on Computational and Applied Mathematics, Berlin. de Gruyter, 2019.
  40. R. W. Lewis and B. Schrefler. The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, 2nd Edition. Wiley, 1999.
  41. R. Liu. Discontinuous Galerkin Finite Element Solution for Poromechanics. PhD thesis, The University of Texas at Austin, 2004.
  42. A. Logg. Multi-adaptive galerkin methods for odes i. SIAM Journal on Scientific Computing, 24(6):1879–1902, 2003.
  43. A. Logg. Multi-adaptive galerkin methods for odes ii: implementation and applications. SIAM Journal on Scientific Computing, 25(4):1119–1141, 2004.
  44. J. Mandel. Consolidation des sols (Étude mathématique). Géotechnique, 3(7):287–299, 1953.
  45. A temporal consistent monolithic approach to fluid-structure interaction enabling single field predictors. SIAM Journal on Scientific Computing, 37(1):B30–B59, 2015.
  46. D. Meidner and T. Richter. Goal-oriented error estimation for the fractional step theta scheme. Comput. Methods Appl. Math., 14(2):203–230, 2014.
  47. T. Richter. Fluid-structure interactions: models, analysis, and finite elements. Springer, 2017.
  48. Tensor-product space-time goal-oriented error control and adaptivity with partition-of-unity dual-weighted residuals for nonstationary flow problems. Computational Methods in Applied Mathematics, 2023.
  49. I. Rybak and J. Magiera. A multiple-time-step technique for coupled free flow and porous medium systems. Journal of Computational Physics, 272:327–342, 2014.
  50. Multirate time integration for coupled saturated/unsaturated porous medium and free flow systems. Comput. Geosci., 19(2):299–309, 2015.
  51. Y. Saad. Iterative methods for sparse linear systems. SIAM, 2003.
  52. V. Savcenco. Construction of a multirate rodas method for stiff odes. Journal of Computational and Applied Mathematics, 225(2):323–337, 2009.
  53. A multirate time stepping strategy for stiff ordinary differential equations. BIT, 47(1):137–155, 2007.
  54. Multirate runge-kutta schemes for advection equations. Journal of Computational and Applied Mathematics, 226(2):345–357, 2009. Special Issue: Large scale scientific computations.
  55. M. Schmich and B. Vexler. Adaptivity with dynamic meshes for space-time finite element discretizations of parabolic equations. SIAM J. Sci. Comput., 30(1):369 – 393, 2008.
  56. A decoupling method with different subdomain time steps for the nonstationary Stokes-Darcy model. Numerical Methods for Partial Differential Equations, 29(2):549–583, 2013.
  57. R. Showalter. Diffusion in poro-elastic media. Journal of Mathematical Analysis and Applications, 251(1):310–340, 2000.
  58. Mass conservative BDF-discontinuous Galerkin/explicit finite volume schemes for coupling subsurface and overland flows. Comput. Methods Appl. Mech. Engrg., 198(27):2122–2136, 2009.
  59. M. Soszyńska. Temporal Multiscale Simulations for Multiphysics Problems. PhD thesis, University of Magdeburg, 2023.
  60. M. Soszyńska and T. Richter. Adaptive time-step control for a monolithic multirate scheme coupling the heat and wave equation. BIT Numerical Mathematics, 61(4):1367–1396, Dec 2021.
  61. A new strategy for finite element computations involving moving boundaries and interfaces - the deforming-spatial-domain/space-time procedure: I. the concept and the preliminary numerical tests. Comp. Methods Appl. Mech. Engrg., 94:339–351, 1992.
  62. Computation of Unsteady Incompressible Flows With the Finite Element Methods Space-Time Formulations, Iterative Strategies and Massively Parallel Implementations, volume 143 of New Methods in Transient Analysis, PVP-Vol. 246, AMD-Vol. 143, pages 7–24. ASME, New York, 1992.
  63. I. Tolstoy. Acoustic, elasticity, and thermodynamics of porous media, Twenty-one papers by M.A. Biot. Acoustical Society of America, New York, 1992.
  64. Mandel’s problem as a benchmark for two-dimensional nonlinear poroelasticity. Appl. Anal., 101(12):4267–4293, 2022.
  65. IPACS: Integrated Phase-Field Advanced Crack Propagation Simulator. An adaptive, parallel, physics-based-discretization phase-field framework for fracture propagation in porous media. Comput. Methods Appl. Mech. Engrg., 367:113124, 2020.
  66. T. Wick. Multiphysics Phase-Field Fracture: Modeling, Adaptive Discretizations, and Solvers. De Gruyter, Berlin, Boston, 2020.
Citations (1)

Summary

We haven't generated a summary for this paper yet.