Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hybrid-CSR: Coupling Explicit and Implicit Shape Representation for Cortical Surface Reconstruction (2307.12299v1)

Published 23 Jul 2023 in cs.CV

Abstract: We present Hybrid-CSR, a geometric deep-learning model that combines explicit and implicit shape representations for cortical surface reconstruction. Specifically, Hybrid-CSR begins with explicit deformations of template meshes to obtain coarsely reconstructed cortical surfaces, based on which the oriented point clouds are estimated for the subsequent differentiable poisson surface reconstruction. By doing so, our method unifies explicit (oriented point clouds) and implicit (indicator function) cortical surface reconstruction. Compared to explicit representation-based methods, our hybrid approach is more friendly to capture detailed structures, and when compared with implicit representation-based methods, our method can be topology aware because of end-to-end training with a mesh-based deformation module. In order to address topology defects, we propose a new topology correction pipeline that relies on optimization-based diffeomorphic surface registration. Experimental results on three brain datasets show that our approach surpasses existing implicit and explicit cortical surface reconstruction methods in numeric metrics in terms of accuracy, regularity, and consistency.

Citations (3)

Summary

We haven't generated a summary for this paper yet.