Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Agreement forests of caterpillar trees: complexity, kernelization and branching (2307.12176v2)

Published 22 Jul 2023 in q-bio.PE, cs.DS, and math.CO

Abstract: Given a set $X$ of species, a phylogenetic tree is an unrooted binary tree whose leaves are bijectively labelled by $X$. Such trees can be used to show the way species evolve over time. One way of understanding how topologically different two phylogenetic trees are, is to construct a minimum-size agreement forest: a partition of $X$ into the smallest number of blocks, such that the blocks induce homeomorphic, non-overlapping subtrees in both trees. This comparison yields insight into commonalities and differences in the evolution of $X$ across the two trees. Computing a smallest agreement forest is NP-hard (Hein, Jiang, Wang and Zhang, Discrete Applied Mathematics 71(1-3), 1996). In this work we study the problem on caterpillars, which are path-like phylogenetic trees. We will demonstrate that, even if we restrict the input to this highly restricted subclass, the problem remains NP-hard and is in fact APX-hard. Furthermore we show that for caterpillars two standard reductions rules well known in the literature yield a tight kernel of size at most $7k$, compared to $15k$ for general trees (Kelk and Simone, SIAM Journal on Discrete Mathematics 33(3), 2019). Finally we demonstrate that we can determine if two caterpillars have an agreement forest with at most $k$ blocks in $O*(2.49k)$ time, compared to $O*(3k)$ for general trees (Chen, Fan and Sze, Theoretical Computater Science 562, 2015), where $O*(.)$ suppresses polynomial factors.

Citations (1)

Summary

We haven't generated a summary for this paper yet.