Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Vulnerability Detection Through an Adversarial Fuzzing Algorithm (2307.11917v1)

Published 21 Jul 2023 in cs.SE

Abstract: Fuzzing is a popular vulnerability automated testing method utilized by professionals and broader community alike. However, despite its abilities, fuzzing is a time-consuming, computationally expensive process. This is problematic for the open source community and smaller developers, as most people will not have dedicated security professionals and/or knowledge to perform extensive testing on their own. The goal of this project is to increase the efficiency of existing fuzzers by allowing fuzzers to explore more paths and find more bugs in shorter amounts of time, while still remaining operable on a personal device. To accomplish this, adversarial methods are built on top of current evolutionary algorithms to generate test cases for further and more efficient fuzzing. The results of this show that adversarial attacks do in fact increase outpaces existing fuzzers significantly and, consequently, crashes found.

Summary

We haven't generated a summary for this paper yet.