Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How do you feel? Measuring User-Perceived Value for Rejecting Machine Decisions in Hate Speech Detection (2307.11806v1)

Published 21 Jul 2023 in cs.HC

Abstract: Hate speech moderation remains a challenging task for social media platforms. Human-AI collaborative systems offer the potential to combine the strengths of humans' reliability and the scalability of machine learning to tackle this issue effectively. While methods for task handover in human-AI collaboration exist that consider the costs of incorrect predictions, insufficient attention has been paid to accurately estimating these costs. In this work, we propose a value-sensitive rejection mechanism that automatically rejects machine decisions for human moderation based on users' value perceptions regarding machine decisions. We conduct a crowdsourced survey study with 160 participants to evaluate their perception of correct and incorrect machine decisions in the domain of hate speech detection, as well as occurrences where the system rejects making a prediction. Here, we introduce Magnitude Estimation, an unbounded scale, as the preferred method for measuring user (dis)agreement with machine decisions. Our results show that Magnitude Estimation can provide a reliable measurement of participants' perception of machine decisions. By integrating user-perceived value into human-AI collaboration, we further show that it can guide us in 1) determining when to accept or reject machine decisions to obtain the optimal total value a model can deliver and 2) selecting better classification models as compared to the more widely used target of model accuracy.

Summary

We haven't generated a summary for this paper yet.