Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sensi-BERT: Towards Sensitivity Driven Fine-Tuning for Parameter-Efficient BERT (2307.11764v2)

Published 14 Jul 2023 in cs.CL

Abstract: Large pre-trained LLMs have recently gained significant traction due to their improved performance on various down-stream tasks like text classification and question answering, requiring only few epochs of fine-tuning. However, their large model sizes often prohibit their applications on resource-constrained edge devices. Existing solutions of yielding parameter-efficient BERT models largely rely on compute-exhaustive training and fine-tuning. Moreover, they often rely on additional compute heavy models to mitigate the performance gap. In this paper, we present Sensi-BERT, a sensitivity driven efficient fine-tuning of BERT models that can take an off-the-shelf pre-trained BERT model and yield highly parameter-efficient models for downstream tasks. In particular, we perform sensitivity analysis to rank each individual parameter tensor, that then is used to trim them accordingly during fine-tuning for a given parameter or FLOPs budget. Our experiments show the efficacy of Sensi-BERT across different downstream tasks including MNLI, QQP, QNLI, SST-2 and SQuAD, showing better performance at similar or smaller parameter budget compared to various alternatives.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Souvik Kundu (76 papers)
  2. Sharath Nittur Sridhar (16 papers)
  3. Maciej Szankin (7 papers)
  4. Sairam Sundaresan (17 papers)
Citations (2)