Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weighted analytic regularity for the integral fractional Laplacian in polyhedra (2307.11679v2)

Published 21 Jul 2023 in math.AP, cs.NA, and math.NA

Abstract: On polytopal domains in $\mathbb{R}3$, we prove weighted analytic regularity of solutions to the Dirichlet problem for the integral fractional Laplacian with analytic right-hand side. Employing the Caffarelli-Silvestre extension allows to localize the problem and to decompose the regularity estimates into results on vertex, edge, face, vertex-edge, vertex-face, edge-face and vertex-edge-face neighborhoods of the boundary. Using tangential differentiability of the extended solutions, a bootstrapping argument based on Caccioppoli inequalities on dyadic decompositions of the neighborhoods provides weighted, analytic control of higher order solution derivatives.

Citations (1)

Summary

We haven't generated a summary for this paper yet.