Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A pressure-free long-time stable reduced-order model for two-dimensional Rayleigh-Bénard convection (2307.11422v2)

Published 21 Jul 2023 in physics.flu-dyn, cs.NA, and math.NA

Abstract: The present work presents a stable POD-Galerkin based reduced-order model (ROM) for two-dimensional Rayleigh-B\'enard convection in a square geometry for three Rayleigh numbers: $104$ (steady state), $3\times 105$ (periodic), and $6 \times 106$ (chaotic). Stability is obtained through a particular (staggered-grid) full-order model (FOM) discretization that leads to a ROM that is pressure-free and has skew-symmetric (energy-conserving) convective terms. This yields long-time stable solutions without requiring stabilizing mechanisms, even outside the training data range. The ROM's stability is validated for the different test cases by investigating the Nusselt and Reynolds number time series and the mean and variance of the vertical temperature profile. In general, these quantities converge to the FOM when increasing the number of modes, and turn out to be a good measure of accuracy. However, for the chaotic case, convergence with increasing numbers of modes is relatively difficult and a high number of modes is required to resolve the low-energy structures that are important for the global dynamics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. doi:10.1098/rspa.1954.0197.
  2. doi:10.1063/1.5125758.
  3. doi:10.1146/annurev.fluid.010908.165152.
  4. doi:10.1103/PhysRevFluids.3.113501.
  5. doi:10.1017/jfm.2020.961.
  6. doi:10.1137/1.9780898718713.
  7. doi:10.1137/130932715.
  8. doi:https://doi.org/10.1016/j.compfluid.2018.01.035.
  9. doi:https://doi.org/10.1016/j.cma.2012.04.015.
  10. doi:https://doi.org/10.1016/j.apm.2018.09.031.
  11. doi:10.1063/5.0061577.
  12. doi:https://doi.org/10.1016/j.engappai.2023.106923. URL https://www.sciencedirect.com/science/article/pii/S0952197623011077
  13. doi:https://doi.org/10.1016/j.jcp.2018.05.019.
  14. doi:https://doi.org/10.1016/j.jcp.2020.109736.
  15. doi:10.1017/jfm.2015.176.
  16. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2021.121995. URL https://www.sciencedirect.com/science/article/pii/S0017931021011017
  17. doi:https://doi.org/10.1016/j.cjph.2022.07.011. URL https://www.sciencedirect.com/science/article/pii/S0577907322001915
  18. doi:10.1088/1367-2630/12/7/075022.
  19. doi:https://doi.org/10.1016/j.jcp.2011.11.028.
  20. doi:10.1103/PhysRevFluids.6.124605.
  21. doi:10.1016/j.jcp.2013.10.031.
  22. doi:10.1016/j.cma.2016.03.025.
  23. doi:10.1002/fld.4684.
  24. doi:10.1016/j.physd.2021.133122.
  25. arXiv:2301.13770, doi:10.48550/arXiv.2301.13770.
Citations (2)

Summary

We haven't generated a summary for this paper yet.