Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Contrastive Graph Pooling for Explainable Classification of Brain Networks (2307.11133v3)

Published 7 Jul 2023 in q-bio.NC, cs.AI, and cs.LG

Abstract: Functional magnetic resonance imaging (fMRI) is a commonly used technique to measure neural activation. Its application has been particularly important in identifying underlying neurodegenerative conditions such as Parkinson's, Alzheimer's, and Autism. Recent analysis of fMRI data models the brain as a graph and extracts features by graph neural networks (GNNs). However, the unique characteristics of fMRI data require a special design of GNN. Tailoring GNN to generate effective and domain-explainable features remains challenging. In this paper, we propose a contrastive dual-attention block and a differentiable graph pooling method called ContrastPool to better utilize GNN for brain networks, meeting fMRI-specific requirements. We apply our method to 5 resting-state fMRI brain network datasets of 3 diseases and demonstrate its superiority over state-of-the-art baselines. Our case study confirms that the patterns extracted by our method match the domain knowledge in neuroscience literature, and disclose direct and interesting insights. Our contributions underscore the potential of ContrastPool for advancing the understanding of brain networks and neurodegenerative conditions. The source code is available at https://github.com/AngusMonroe/ContrastPool.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (63)
  1. K. J. Worsley, C. H. Liao, J. Aston, V. Petre, G. Duncan, F. Morales, and A. C. Evans, “A general statistical analysis for fmri data,” Neuroimage, vol. 15, no. 1, pp. 1–15, 2002.
  2. R. A. Poldrack, Y. O. Halchenko, and S. J. Hanson, “Decoding the large-scale structure of brain function by classifying mental states across individuals,” Psychological science, vol. 20, no. 11, pp. 1364–1372, 2009.
  3. J. Xu, Y. Yang, D. T. J. Huang, S. S. Gururajapathy, Y. Ke, M. Qiao, A. Wang, H. Kumar, J. McGeown, and E. Kwon, “Data-driven network neuroscience: On data collection and benchmark,” in Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2023.
  4. J. Kawahara, C. J. Brown, S. P. Miller, B. G. Booth, V. Chau, R. E. Grunau, J. G. Zwicker, and G. Hamarneh, “Brainnetcnn: Convolutional neural networks for brain networks; towards predicting neurodevelopment,” NeuroImage, vol. 146, pp. 1038–1049, 2017.
  5. T. Lanciano, F. Bonchi, and A. Gionis, “Explainable classification of brain networks via contrast subgraphs,” in Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020, pp. 3308–3318.
  6. T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.
  7. J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural message passing for quantum chemistry,” in International conference on machine learning.   PMLR, 2017, pp. 1263–1272.
  8. J. Xu, A. Zhang, Q. Bian, V. P. Dwivedi, and Y. Ke, “Union subgraph neural networks,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, no. 14, 2024, pp. 16 173–16 183.
  9. S. Wu, F. Sun, W. Zhang, X. Xie, and B. Cui, “Graph neural networks in recommender systems: a survey,” ACM Computing Surveys, vol. 55, no. 5, pp. 1–37, 2022.
  10. Q. Bian, J. Xu, H. Fang, and Y. Ke, “Cpmr: Context-aware incremental sequential recommendation with pseudo-multi-task learning,” in Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, 2023, pp. 120–130.
  11. S. I. Ktena, S. Parisot, E. Ferrante, M. Rajchl, M. Lee, B. Glocker, and D. Rueckert, “Distance metric learning using graph convolutional networks: Application to functional brain networks,” in Medical Image Computing and Computer Assisted Intervention- MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part I 20.   Springer, 2017, pp. 469–477.
  12. X. Li, Y. Zhou, N. C. Dvornek, M. Zhang, J. Zhuang, P. Ventola, and J. S. Duncan, “Pooling regularized graph neural network for fmri biomarker analysis,” in Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part VII 23.   Springer, 2020, pp. 625–635.
  13. X. Li, Y. Zhou, N. Dvornek, M. Zhang, S. Gao, J. Zhuang, D. Scheinost, L. H. Staib, P. Ventola, and J. S. Duncan, “Braingnn: Interpretable brain graph neural network for fmri analysis,” Medical Image Analysis, vol. 74, p. 102233, 2021.
  14. Y. Yan, J. Zhu, M. Duda, E. Solarz, C. Sripada, and D. Koutra, “Groupinn: Grouping-based interpretable neural network for classification of limited, noisy brain data,” in proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, 2019, pp. 772–782.
  15. Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen, “Graph contrastive learning with augmentations,” Advances in neural information processing systems, vol. 33, pp. 5812–5823, 2020.
  16. Y. Yin, Q. Wang, S. Huang, H. Xiong, and X. Zhang, “Autogcl: Automated graph contrastive learning via learnable view generators,” in Proceedings of the AAAI conference on artificial intelligence, vol. 36, no. 8, 2022, pp. 8892–8900.
  17. J. Chen and G. Kou, “Attribute and structure preserving graph contrastive learning,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, no. 6, 2023, pp. 7024–7032.
  18. P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.
  19. S. Brody, U. Alon, and E. Yahav, “How attentive are graph attention networks?” arXiv preprint arXiv:2105.14491, 2021.
  20. E. Choi, M. T. Bahadori, L. Song, W. F. Stewart, and J. Sun, “Gram: graph-based attention model for healthcare representation learning,” in Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, 2017, pp. 787–795.
  21. F. Ma, R. Chitta, J. Zhou, Q. You, T. Sun, and J. Gao, “Dipole: Diagnosis prediction in healthcare via attention-based bidirectional recurrent neural networks,” in Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, 2017, pp. 1903–1911.
  22. K. K. Thekumparampil, C. Wang, S. Oh, and L.-J. Li, “Attention-based graph neural network for semi-supervised learning,” arXiv preprint arXiv:1803.03735, 2018.
  23. J. B. Lee, R. Rossi, and X. Kong, “Graph classification using structural attention,” in Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018, pp. 1666–1674.
  24. Q. Sun, J. Li, H. Peng, J. Wu, Y. Ning, P. S. Yu, and L. He, “Sugar: Subgraph neural network with reinforcement pooling and self-supervised mutual information mechanism,” in Proceedings of the Web Conference 2021, 2021, pp. 2081–2091.
  25. J. Lee, I. Lee, and J. Kang, “Self-attention graph pooling,” in International conference on machine learning.   PMLR, 2019, pp. 3734–3743.
  26. A. Nouranizadeh, M. Matinkia, M. Rahmati, and R. Safabakhsh, “Maximum entropy weighted independent set pooling for graph neural networks,” arXiv preprint arXiv:2107.01410, 2021.
  27. Z. Zhang, J. Bu, M. Ester, J. Zhang, C. Yao, Z. Yu, and C. Wang, “Hierarchical graph pooling with structure learning,” arXiv preprint arXiv:1911.05954, 2019.
  28. X. Li, N. C. Dvornek, Y. Zhou, J. Zhuang, P. Ventola, and J. S. Duncan, “Graph neural network for interpreting task-fmri biomarkers,” in Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part V 22.   Springer, 2019, pp. 485–493.
  29. M. Xu, D. L. Sanz, P. Garces, F. Maestu, Q. Li, and D. Pantazis, “A graph gaussian embedding method for predicting alzheimer’s disease progression with meg brain networks,” IEEE Transactions on Biomedical Engineering, vol. 68, no. 5, pp. 1579–1588, 2021.
  30. H. Zhang, R. Song, L. Wang, L. Zhang, D. Wang, C. Wang, and W. Zhang, “Classification of brain disorders in rs-fmri via local-to-global graph neural networks,” IEEE Transactions on Medical Imaging, 2022.
  31. J.-E. Ding, C.-C. Hsu, and F. Liu, “Parkinson disease classification using contrastive graph cross-view learning with multimodal fusion of spect images and clinical features,” arXiv preprint arXiv:2311.14902, 2023.
  32. B.-H. Kim, J. C. Ye, and J.-J. Kim, “Learning dynamic graph representation of brain connectome with spatio-temporal attention,” Advances in Neural Information Processing Systems, vol. 34, pp. 4314–4327, 2021.
  33. Y. Yu, X. Kan, H. Cui, R. Xu, Y. Zheng, X. Song, Y. Zhu, K. Zhang, R. Nabi, Y. Guo et al., “Learning task-aware effective brain connectivity for fmri analysis with graph neural networks,” arXiv preprint arXiv:2211.00261, 2022.
  34. X. Kan, W. Dai, H. Cui, Z. Zhang, Y. Guo, and C. Yang, “Brain network transformer,” arXiv preprint arXiv:2210.06681, 2022.
  35. L. Badea, M. Onu, T. Wu, A. Roceanu, and O. Bajenaru, “Exploring the reproducibility of functional connectivity alterations in parkinson’s disease,” PLoS One, vol. 12, no. 11, p. e0188196, 2017.
  36. K. Dadi, M. Rahim, A. Abraham, D. Chyzhyk, M. Milham, B. Thirion, G. Varoquaux, A. D. N. Initiative et al., “Benchmarking functional connectome-based predictive models for resting-state fmri,” NeuroImage, vol. 192, pp. 115–134, 2019.
  37. C. Craddock, Y. Benhajali, C. Chu, F. Chouinard, A. Evans, A. Jakab, B. S. Khundrakpam, J. D. Lewis, Q. Li, M. Milham et al., “The neuro bureau preprocessing initiative: open sharing of preprocessed neuroimaging data and derivatives,” Frontiers in Neuroinformatics, vol. 7, p. 27, 2013.
  38. O. Esteban, C. J. Markiewicz, R. W. Blair, C. A. Moodie, A. I. Isik, A. Erramuzpe, J. D. Kent, M. Goncalves, E. DuPre, M. Snyder et al., “fmriprep: a robust preprocessing pipeline for functional mri,” Nature methods, vol. 16, no. 1, pp. 111–116, 2019.
  39. A. Schaefer, R. Kong, E. M. Gordon, T. O. Laumann, X.-N. Zuo, A. J. Holmes, S. B. Eickhoff, and B. T. Yeo, “Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity mri,” Cerebral cortex, vol. 28, no. 9, pp. 3095–3114, 2018.
  40. K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural networks?” arXiv preprint arXiv:1810.00826, 2018.
  41. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
  42. Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec, “Hierarchical graph representation learning with differentiable pooling,” Advances in neural information processing systems, vol. 31, 2018.
  43. D. R. Cox, “The regression analysis of binary sequences,” Journal of the Royal Statistical Society: Series B (Methodological), vol. 20, no. 2, pp. 215–232, 1958.
  44. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al., “Scikit-learn: Machine learning in python,” the Journal of machine Learning research, vol. 12, pp. 2825–2830, 2011.
  45. W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large graphs,” Advances in neural information processing systems, vol. 30, 2017.
  46. X. Bresson and T. Laurent, “Residual gated graph convnets,” arXiv preprint arXiv:1711.07553, 2017.
  47. V. P. Dwivedi, C. K. Joshi, A. T. Luu, T. Laurent, Y. Bengio, and X. Bresson, “Benchmarking graph neural networks,” arXiv preprint arXiv:2003.00982, 2020.
  48. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
  49. A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” 2017.
  50. M. Wang, L. Yu, D. Zheng, Q. Gan, Y. Gai, Z. Ye, M. Li, J. Zhou, Q. Huang, C. Ma et al., “Deep graph library: Towards efficient and scalable deep learning on graphs.” 2019.
  51. S.-J. Weng, J. L. Wiggins, S. J. Peltier, M. Carrasco, S. Risi, C. Lord, and C. S. Monk, “Alterations of resting state functional connectivity in the default network in adolescents with autism spectrum disorders,” Brain research, vol. 1313, pp. 202–214, 2010.
  52. M. Assaf, K. Jagannathan, V. D. Calhoun, L. Miller, M. C. Stevens, R. Sahl, J. G. O’Boyle, R. T. Schultz, and G. D. Pearlson, “Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients,” Neuroimage, vol. 53, no. 1, pp. 247–256, 2010.
  53. R. K. Kana, E. B. Sartin, C. Stevens Jr, H. D. Deshpande, C. Klein, M. R. Klinger, and L. G. Klinger, “Neural networks underlying language and social cognition during self-other processing in autism spectrum disorders,” Neuropsychologia, vol. 102, pp. 116–123, 2017.
  54. R. L. Gould, R. G. Brown, A. M. Owen, E. T. Bullmore, and R. J. Howard, “Task-induced deactivations during successful paired associates learning: an effect of age but not alzheimer’s disease,” Neuroimage, vol. 31, no. 2, pp. 818–831, 2006.
  55. M. R. Brier, J. B. Thomas, A. Z. Snyder, T. L. Benzinger, D. Zhang, M. E. Raichle, D. M. Holtzman, J. C. Morris, and B. M. Ances, “Loss of intranetwork and internetwork resting state functional connections with alzheimer’s disease progression,” Journal of Neuroscience, vol. 32, no. 26, pp. 8890–8899, 2012.
  56. P. Alexopoulos, C. Sorg, A. Förschler, T. Grimmer, M. Skokou, A. Wohlschläger, R. Perneczky, C. Zimmer, A. Kurz, and C. Preibisch, “Perfusion abnormalities in mild cognitive impairment and mild dementia in alzheimer’s disease measured by pulsed arterial spin labeling mri,” European archives of psychiatry and clinical neuroscience, vol. 262, pp. 69–77, 2012.
  57. S. Tu, S. Wong, J. R. Hodges, M. Irish, O. Piguet, and M. Hornberger, “Lost in spatial translation–a novel tool to objectively assess spatial disorientation in alzheimer’s disease and frontotemporal dementia,” Cortex, vol. 67, pp. 83–94, 2015.
  58. O. Monchi, M. Petrides, J. Doyon, R. B. Postuma, K. Worsley, and A. Dagher, “Neural bases of set-shifting deficits in parkinson’s disease,” Journal of Neuroscience, vol. 24, no. 3, pp. 702–710, 2004.
  59. N. J. Gerrits, Y. D. van der Werf, K. M. Verhoef, D. J. Veltman, H. J. Groenewegen, H. W. Berendse, and O. A. van den Heuvel, “Compensatory fronto-parietal hyperactivation during set-shifting in unmedicated patients with parkinson’s disease,” Neuropsychologia, vol. 68, pp. 107–116, 2015.
  60. M. A. Fernández-Seara, E. Mengual, M. Vidorreta, G. Castellanos, J. Irigoyen, E. Erro, and M. A. Pastor, “Resting state functional connectivity of the subthalamic nucleus in p arkinson’s disease assessed using arterial spin-labeled perfusion f mri,” Human brain mapping, vol. 36, no. 5, pp. 1937–1950, 2015.
  61. M. D. Fox, M. Corbetta, A. Z. Snyder, J. L. Vincent, and M. E. Raichle, “Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems,” Proceedings of the National Academy of Sciences, vol. 103, no. 26, pp. 10 046–10 051, 2006.
  62. M. F. Mendez, M. Ghajarania, and K. M. Perryman, “Posterior cortical atrophy: clinical characteristics and differences compared to alzheimer’s disease,” Dementia and geriatric cognitive disorders, vol. 14, no. 1, pp. 33–40, 2002.
  63. L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal of machine learning research, vol. 9, no. 11, 2008.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com