Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hypergraph Diffusions and Resolvents for Norm-Based Hypergraph Laplacians (2307.11042v1)

Published 20 Jul 2023 in cs.DS

Abstract: The development of simple and fast hypergraph spectral methods has been hindered by the lack of numerical algorithms for simulating heat diffusions and computing fundamental objects, such as Personalized PageRank vectors, over hypergraphs. In this paper, we overcome this challenge by designing two novel algorithmic primitives. The first is a simple, easy-to-compute discrete-time heat diffusion that enjoys the same favorable properties as the discrete-time heat diffusion over graphs. This diffusion can be directly applied to speed up existing hypergraph partitioning algorithms. Our second contribution is the novel application of mirror descent to compute resolvents of non-differentiable squared norms, which we believe to be of independent interest beyond hypergraph problems. Based on this new primitive, we derive the first nearly-linear-time algorithm that simulates the discrete-time heat diffusion to approximately compute resolvents of the hypergraph Laplacian operator, which include Personalized PageRank vectors and solutions to the hypergraph analogue of Laplacian systems. Our algorithm runs in time that is linear in the size of the hypergraph and inversely proportional to the hypergraph spectral gap $\lambda_G$, matching the complexity of analogous diffusion-based algorithms for the graph version of the problem.

Summary

We haven't generated a summary for this paper yet.