Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient and Joint Hyperparameter and Architecture Search for Collaborative Filtering (2307.11004v1)

Published 12 Jul 2023 in cs.IR and cs.LG

Abstract: Automated Machine Learning (AutoML) techniques have recently been introduced to design Collaborative Filtering (CF) models in a data-specific manner. However, existing works either search architectures or hyperparameters while ignoring the fact they are intrinsically related and should be considered together. This motivates us to consider a joint hyperparameter and architecture search method to design CF models. However, this is not easy because of the large search space and high evaluation cost. To solve these challenges, we reduce the space by screening out usefulness yperparameter choices through a comprehensive understanding of individual hyperparameters. Next, we propose a two-stage search algorithm to find proper configurations from the reduced space. In the first stage, we leverage knowledge from subsampled datasets to reduce evaluation costs; in the second stage, we efficiently fine-tune top candidate models on the whole dataset. Extensive experiments on real-world datasets show better performance can be achieved compared with both hand-designed and previous searched models. Besides, ablation and case studies demonstrate the effectiveness of our search framework.

Citations (5)

Summary

We haven't generated a summary for this paper yet.