Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Brezis--Seeger--Van Schaftingen--Yung-Type Characterization of Homogeneous Ball Banach Sobolev Spaces and Its Applications (2307.10528v2)

Published 20 Jul 2023 in math.FA, math.AP, and math.CA

Abstract: Let $\gamma\in\mathbb{R}\setminus{0}$ and $X(\mathbb{R}n)$ be a ball Banach function space satisfying some extra mild assumptions. Assume that $\Omega=\mathbb{R}n$ or $\Omega\subset\mathbb{R}n$ is an $(\varepsilon,\infty)$-domain for some $\varepsilon\in(0,1]$. In this article, the authors prove that a function $f$ belongs to the homogeneous ball Banach Sobolev space $\dot{W}{1,X}(\Omega)$ if and only if $f\in L_{\mathrm{loc}}1(\Omega)$ and $$ \sup_{\lambda\in(0,\infty)}\lambda \left|\left[\int_{{y\in\Omega:\ |f(\cdot)-f(y)|>\lambda|\cdot-y|{1+\frac{\gamma}{p}}}} \left|\cdot-y\right|{\gamma-n}\,dy \right]\frac{1}{p}\right|_{X(\Omega)}<\infty, $$ where $p\in[1,\infty)$ is related to $X(\mathbb{R}n)$. This result is of wide generality and can be applied to various specific Sobolev-type function spaces, including Morrey [Bourgain--Morrey-type, weighted (or mixed-norm or variable) Lebesgue, local (or global) generalized Herz, Lorentz, and Orlicz (or Orlicz-slice)] Sobolev spaces, which is new even in all these special cases; in particular, it coincides with the well-known result of H. Brezis, A. Seeger, J. Van Schaftingen, and P.-L. Yung when $X(\Omega):=Lq(\mathbb{R}n)$ with $1<p=q<\infty$, while it is still new even when $X(\Omega):=Lq(\mathbb{R}n)$ with $1\leq p<q<\infty$.

Citations (6)

Summary

We haven't generated a summary for this paper yet.