Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Design Characterization for Black-and-White Textures in Visualization (2307.10089v3)

Published 19 Jul 2023 in cs.HC and cs.GR

Abstract: We investigate the use of 2D black-and-white textures for the visualization of categorical data and contribute a summary of texture attributes, and the results of three experiments that elicited design strategies as well as aesthetic and effectiveness measures. Black-and-white textures are useful, for instance, as a visual channel for categorical data on low-color displays, in 2D/3D print, to achieve the aesthetic of historic visualizations, or to retain the color hue channel for other visual mappings. We specifically study how to use what we call geometric and iconic textures. Geometric textures use patterns of repeated abstract geometric shapes, while iconic textures use repeated icons that may stand for data categories. We parameterized both types of textures and developed a tool for designers to create textures on simple charts by adjusting texture parameters. 30 visualization experts used our tool and designed 66 textured bar charts, pie charts, and maps. We then had 150 participants rate these designs for aesthetics. Finally, with the top-rated geometric and iconic textures, our perceptual assessment experiment with 150 participants revealed that textured charts perform about equally well as non-textured charts, and that there are some differences depending on the type of chart.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. Data visualization society. Global non-profit organization for data visualization practitioners and enthusiasts, url: www.datavisualizationsociety.org. Last accessed: March 2023.
  2. Icons8. Website and icons database, url: icons8.com. Last accessed: March 2023.
  3. M. Amadasun and R. King. Textural features corresponding to textural properties. IEEE Trans Syst Man Cybern, 19(5):1264–1274, 1989. doi: 10 . 1109/21 . 44046
  4. Stroke pattern analysis and synthesis. Comput Graph Forum, 25(3):663–671, 2006. doi: 10 . 1111/j . 1467-8659 . 2006 . 00986 . x
  5. Useful junk? The effects of visual embellishment on comprehension and memorability of charts. In Proc. CHI, pp. 2573–2582. ACM, New York, 2010. doi: 10 . 1145/1753326 . 1753716
  6. J. Bertin. Sémiologie Graphique. Éd. de l’EHESS, Paris, 3rd ed., 1998. url: editions.ehess.fr/ouvrages/ouvrage/semiologie-graphique/.
  7. J. Bertin. Semiology of Graphics: Diagrams, Networks, Maps. Esri Press, Redlands, 2011. url: esri.com/en-us/esri-press/browse/semiology-of-graphics-diagrams-networks-maps.
  8. L. Besançon and P. Dragicevic. The continued prevalence of dichotomous inferences at CHI. In CHI Extended Abstracts, pp. alt14:1–alt14:11. ACM, New York, 2019. doi: 10 . 1145/3290607 . 3310432
  9. Studies of part-to-whole glanceable visualizations on smartwatch faces. In Proc. PacificVis, pp. 187–196. IEEE Comp. Soc., Los Alamitos, 2023. doi: 10 . 1109/PacificVis56936 . 2023 . 00028
  10. Glyph-based visualization: Foundations, design guidelines, techniques and applications. In Eurographics State of the Art Reports, pp. 39–63. EG Assoc., Goslar, 2013. doi: 10 . 2312/conf/EG2013/stars/039-063
  11. Beyond memorability: Visualization recognition and recall. IEEE Trans Vis Comput Graph, 22(1):519–528, 2016. doi: 10 . 1109/TVCG . 2015 . 2467732
  12. What makes a visualization memorable? IEEE Trans Vis Comput Graph, 19(12):2306–2315, 2013. doi: 10 . 1109/TVCG . 2013 . 234
  13. Rainbow color map (still) considered harmful. IEEE Comput Graph Appl, 27(2):14–17, 2007. doi: 10 . 1109/MCG . 2007 . 323435
  14. W. C. Brinton. Graphic Methods for Presenting Facts. The Engineering Magazine Company, New York, 1914. urn: urn:oclc:record:1045528209.
  15. W. C. Brinton. Graphic Presentation. Brinton Assoc., New York, 1939. urn: urn:oclc:record:1045601113.
  16. P. Brodatz. Textures: A Photographic Album for Artists and Designers, vol. 2. Dover Publications, New York, 1966.
  17. Designing with pictographs: Envision topics without sacrificing understanding. IEEE Trans Vis Comput Graph, 28(12):4515–4530, 2022. doi: 10 . 1109/TVCG . 2021 . 3092680
  18. M. Chen and L. Floridi. An analysis of information visualisation. Synthese, 190(16):3421–3438, 2013. doi: 10 . 1007/s11229-012-0183-y
  19. Reliability and dimensionality of judgments of visually textured materials. Percept Psychophys, 62(4):735–752, 2000. doi: 10 . 3758/BF03206920
  20. W. S. Cleveland and R. McGill. Graphical perception and graphical methods for analyzing scientific data. Science, 229(4716):828–833, 1985. doi: 10 . 1126/science . 229 . 4716 . 828
  21. Threats of a replication crisis in empirical computer science. Commun. ACM, 63(8):70–79, jul 2020. doi: 10 . 1145/3360311
  22. G. Cumming. Understanding the New Statistics: Effect Sizes, Confidence Intervals, and Meta-Analysis. Routledge, New York, 2012. doi: 10 . 4324/9780203807002
  23. P. Dragicevic. Fair statistical communication in HCI. In J. Robertson and M. Kaptein, eds., Modern Statistical Methods for HCI, chap. 13, pp. 291–330. Springer, Cham, 2016. doi: 10 . 1007/978-3-319-26633-6_13
  24. Exploring the placement and design of word-scale visualizations. IEEE Trans Vis Comput Graph, 20(12):2291–2300, 2014. doi: 10 . 1109/TVCG . 2014 . 2346435
  25. R. M. Haralick. Statistical and structural approaches to texture. Proc IEEE, 67(5):786–804, 1979. doi: 10 . 1109/PROC . 1979 . 11328
  26. Isotype visualization: Working memory, performance, and engagement with pictographs. In Proc. CHI, pp. 1191–1200. ACM, New York, 2015. doi: 10 . 1145/2702123 . 2702275
  27. J. K. Hawkins. Textural properties for pattern recognition. In B. C. Lipkin and A. Rosenfeld, eds., Picture Processing and Psychopictorics, pp. 347–370. Academic Press, New York, 1970. url: books.google.com/books?id=vp-w_pC9JBAC&pg=PA347.
  28. BeauVis: A validated scale for measuring the aesthetic pleasure of visual representations. IEEE Trans Vis Comput Graph, 29(1):363–373, 2023. doi: 10 . 1109/TVCG . 2022 . 3209390
  29. Building perceptual textures to visualize multidimensional datasets. In Proc. Visualization, pp. 111–118. IEEE Comp. Soc., Los Alamitos, 1998. doi: 10 . 1109/VISUAL . 1998 . 745292
  30. J. J. Higgins. An Introduction to Modern Nonparametric Statistics. Brooks/Cole, Pacific Grove, 2004.
  31. Technology probes: Inspiring design for and with families. In Proc. CHI, pp. 17–24. ACM, New York, 2003. doi: 10 . 1145/642611 . 642616
  32. B. Julesz. Visual pattern discrimination. IRE Trans Inf Theory, 8(2):84–92, 1962. doi: 10 . 1109/TIT . 1962 . 1057698
  33. B. Julesz. Experiments in the visual perception of texture. Sci Am, 232(4):34–43, 1975. doi: 10 . 1038/scientificamerican0475-34
  34. B. Julesz. Textons, the elements of texture perception, and their interactions. Nature, 290(5802):91–97, 1981. doi: 10 . 1038/290091a0
  35. B. Julesz. A theory of preattentive texture discrimination based on first-order statistics of textons. Biol Cybern, 41(2):131–138, 1981. doi: 10 . 1007/BF00335367
  36. B. Julesz and J. R. Bergen. Human factors and behavioral science: Textons, the fundamental elements in preattentive vision and perception of textures. Bell Syst Tech J, 62(6):1619–1645, 1983. doi: 10 . 1002/j . 1538-7305 . 1983 . tb03502 . x
  37. Inability of humans to discriminate between visual textures that agree in second-order statistics—Revisited. Percept, 2(4):391–405, 1973. doi: 10 . 1068/p020391
  38. S. M. Kosslyn. Graph Design for the Eye and Mind. Oxford University Press, 2006. doi: 10 . 1093/acprof:oso/9780195311846 . 001 . 0001
  39. Selecting semantically-resonant colors for data visualization. Comput Graph Forum, 32(3):401–410, 2013. doi: 10 . 1111/cgf . 12127
  40. F. Liu and R. W. Picard. Periodicity, directionality, and randomness: Wold features for image modeling and retrieval. IEEE Trans Pattern Anal Mach Intell, 18(7):722–733, 1996. doi: 10 . 1109/34 . 506794
  41. J. Mackinlay. Automating the design of graphical presentations of relational information. ACM Trans Graph, 5(2):110–141, 1986. doi: 10 . 1145/22949 . 22950
  42. A survey of digital stippling. Comput Graph, 67:24–44, Oct. 2017. doi: 10 . 1016/j . cag . 2017 . 05 . 001
  43. Showing data about people: A design space of anthropographics. IEEE Trans Vis Comput Graph, 28(3):1661–1679, 2020. doi: 10 . 1109/TVCG . 2020 . 3023013
  44. O. Neurath. From Hieroglyphics to Isotype: A Visual Autobiography. Hyphen Press, London, 2010. Edited by M. Eve and C. Burke, url: perpensapress.com/books/from-hieroglyphics-to-isotype.
  45. Towards a texture naming system: Identifying relevant dimensions of texture. Vision Res, 36(11):1649–1669, 1996. doi: 10 . 1016/0042-6989(95)00202-2
  46. Interactive pen-and-ink illustration. In Proc. SIGGRAPH, pp. 101–108. ACM, New York, 1994. doi: 10 . 1145/192161 . 192185
  47. Supporting expressive and faithful pictorial visualization design with visual style transfer. IEEE Trans Vis Comput Graph, 29(1):236–246, 2023. doi: 10 . 1109/TVCG . 2022 . 3209486
  48. Textural features corresponding to visual perception. IEEE Trans Syst Man Cybern, 8(6):460–473, 1978. doi: 10 . 1109/TSMC . 1978 . 4309999
  49. E. R. Tufte. The Visual Display of Quantitative Information. Graphics Press, Cheshire, 2nd ed., 2001. url: edwardtufte.com/tufte/books_vdqi.
  50. C. Ware. Information Visualization: Perception for Design. Elsevier, 2019. doi: 10 . 1016/C2016-0-02395-1
  51. C. Ware and W. Knight. Orderable dimensions of visual texture for data display: Orientation, size and contrast. In Proc. CHI, pp. 203–209. ACM, New York, 1992. doi: 10 . 1145/142750 . 142791
  52. DataQuilt: Extracting visual elements from images to craft pictorial visualizations. In Proc. CHI, pp. 45:1–45:13. ACM, New York, 2020. doi: 10 . 1145/3313831 . 3376172
  53. Black-and-white textures for visualization on e-ink displays. In Posters at IEEE VIS, 2020. Extended abstract and poster, url: hal.science/hal-02944212.
Citations (1)

Summary

We haven't generated a summary for this paper yet.