Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Communication-Efficient Distribution-Free Inference Over Networks (2307.09850v3)

Published 19 Jul 2023 in stat.ME, cs.SY, and eess.SY

Abstract: Consider a star network where each local node possesses a set of test statistics that exhibit a symmetric distribution around zero when their corresponding null hypothesis is true. This paper investigates statistical inference problems in networks concerning the aggregation of this general type of statistics and global error rate control under communication constraints in various scenarios. The study proposes communication-efficient algorithms that are built on established non-parametric methods, such as the Wilcoxon and sign tests, as well as modern inference methods such as the Benjamini-Hochberg (BH) and Barber-Candes (BC) procedures, coupled with sampling and quantization operations. The proposed methods are evaluated through extensive simulation studies.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. R. F. Barber and E. J. Candès, “Controlling the false discovery rate via knockoffs,” The Annals of Statistics, vol. 43, no. 5, pp. 2055–2085, 2015.
  2. E. Candes, Y. Fan, L. Janson, and J. Lv, “Panning for gold:‘model-X’knockoffs for high dimensional controlled variable selection,” Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 80, no. 3, pp. 551–577, 2018.
  3. R. F. Barber and E. J. Candès, “A knockoff filter for high-dimensional selective inference,” The Annals of Statistics, vol. 47, no. 5, pp. 2504–2537, 2019.
  4. R. F. Barber, E. J. Candès, and R. J. Samworth, “Robust inference with knockoffs,” The Annals of Statistics, vol. 48, no. 3, pp. 1409–1431, 2020.
  5. Y. Lu, Y. Fan, J. Lv, and W. S. Noble, “DeepPINK: reproducible feature selection in deep neural networks,” in Advances in Neural Information Processing Systems, 2018, pp. 8676–8686.
  6. M. Pournaderi and Y. Xiang, “Differentially private variable selection via the knockoff filter,” in 2021 IEEE 31st International Workshop on Machine Learning for Signal Processing.   IEEE, 2021, pp. 1–6.
  7. ——, “Variable selection with the knockoffs: Composite null hypotheses,” arXiv preprint arXiv:2203.02849, 2022.
  8. E. B. Ermis and V. Saligrama, “Adaptive statistical sampling methods for decentralized estimation and detection of localized phenomena,” in Fourth International Symposium on Information Processing in Sensor Networks, 2005.   IEEE, 2005, pp. 143–150.
  9. P. Ray, P. K. Varshney, and R. Niu, “A novel framework for the network-wide distributed detection problem,” in 10th International Conference on Information Fusion.   IEEE, 2007, pp. 1–8.
  10. E. B. Ermis and V. Saligrama, “Distributed detection in sensor networks with limited range multimodal sensors,” IEEE Transactions on Signal Processing, vol. 58, no. 2, pp. 843–858, 2009.
  11. P. Ray and P. K. Varshney, “False discovery rate based sensor decision rules for the network-wide distributed detection problem,” IEEE Transactions on Aerospace and Electronic Systems, vol. 47, no. 3, pp. 1785–1799, 2011.
  12. M. Pournaderi and Y. Xiang, “Sample-and-forward: Communication-efficient control of the false discovery rate in networks,” arXiv preprint arXiv:2210.02555, 2022.
  13. A. Ramdas, J. Chen, M. Wainwright, and M. Jordan, “QuTE: Decentralized multiple testing on sensor networks with false discovery rate control,” arXiv preprint arXiv:2210.04334, 2022.
  14. Y. Xiang, “Distributed false discovery rate control with quantization,” in 2019 IEEE International Symposium on Information Theory.   IEEE, 2019, pp. 246–249.
  15. M. Pournaderi and Y. Xiang, “On large-scale multiple testing over networks: An asymptotic approach,” arXiv preprint arXiv:2211.16059, 2022.
  16. R. J. Simes, “An improved bonferroni procedure for multiple tests of significance,” Biometrika, vol. 73, no. 3, pp. 751–754, 1986.
  17. Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: a practical and powerful approach to multiple testing,” Journal of the royal statistical society. Series B (Methodological), pp. 289–300, 1995.
  18. W. Su, J. Qian, and L. Liu, “Communication-efficient false discovery rate control via knockoff aggregation,” arXiv preprint arXiv:1506.05446, 2015.
  19. R. F. Barber and A. Ramdas, “The p-filter: multilayer false discovery rate control for grouped hypotheses,” Journal of the Royal Statistical Society. Series B (Statistical Methodology), vol. 79, no. 4, pp. 1247–1268, 2017.

Summary

We haven't generated a summary for this paper yet.