Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Continuous Non-monotone DR-submodular Maximization with Down-closed Convex Constraint (2307.09616v3)

Published 13 Jul 2023 in cs.DS and math.OC

Abstract: We investigate the continuous non-monotone DR-submodular maximization problem subject to a down-closed convex solvable constraint. Our first contribution is to construct an example to demonstrate that (first-order) stationary points can have arbitrarily bad approximation ratios, and they are usually on the boundary of the feasible domain. These findings are in contrast with the monotone case where any stationary point yields a $1/2$-approximation (Hassani et al. (2017)). Moreover, this example offers insights on how to design improved algorithms by avoiding bad stationary points, such as the restricted continuous local search algorithm (Chekuri et al. (2014)) and the aided measured continuous greedy (Buchbinder and Feldman (2019)). However, the analyses in the last two algorithms only work for the discrete domain because both need to invoke the inequality that the multilinear extension of any submodular set function is bounded from below by its Lovasz extension. Our second contribution, therefore, is to remove this restriction and show that both algorithms can be extended to the continuous domain while retaining the same approximation ratios, and hence offering improved approximation ratios over those in Bian et al. (2017a). for the same problem. At last, we also include numerical experiments to demonstrate our algorithms on problems arising from machine learning and artificial intelligence.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com