Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast 2-Approximate All-Pairs Shortest Paths (2307.09258v2)

Published 18 Jul 2023 in cs.DS

Abstract: In this paper, we revisit the classic approximate All-Pairs Shortest Paths (APSP) problem in undirected graphs. For unweighted graphs, we provide an algorithm for $2$-approximate APSP in $\tilde O(n{2.5-r}+n{\omega(r)})$ time, for any $r\in[0,1]$. This is $O(n{2.032})$ time, using known bounds for rectangular matrix multiplication $n{\omega(r)}$ [Le Gall, Urrutia, SODA 2018]. Our result improves on the $\tilde{O}(n{2.25})$ bound of [Roditty, STOC 2023], and on the $\tilde{O}(m\sqrt n+n2)$ bound of [Baswana, Kavitha, SICOMP 2010] for graphs with $m\geq n{1.532}$ edges. For weighted graphs, we obtain $(2+\epsilon)$-approximate APSP in $\tilde O(n{3-r}+n{\omega(r)})$ time, for any $r\in [0,1]$. This is $O(n{2.214})$ time using known bounds for $\omega(r)$. It improves on the state of the art bound of $O(n{2.25})$ by [Kavitha, Algorithmica 2012]. Our techniques further lead to improved bounds in a wide range of density for weighted graphs. In particular, for the sparse regime we construct a distance oracle in $\tilde O(mn{2/3})$ time that supports $2$-approximate queries in constant time. For sparse graphs, the preprocessing time of the algorithm matches conditional lower bounds [Patrascu, Roditty, Thorup, FOCS 2012; Abboud, Bringmann, Fischer, STOC 2023]. To the best of our knowledge, this is the first 2-approximate distance oracle that has subquadratic preprocessing time in sparse graphs. We also obtain new bounds in the near additive regime for unweighted graphs. We give faster algorithms for $(1+\epsilon,k)$-approximate APSP, for $k=2,4,6,8$. We obtain these results by incorporating fast rectangular matrix multiplications into various combinatorial algorithms that carefully balance out distance computation on layers of sparse graphs preserving certain distance information.

Citations (1)

Summary

We haven't generated a summary for this paper yet.