Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Higher Catoids, Higher Quantales and their Correspondences (2307.09253v2)

Published 18 Jul 2023 in cs.LO

Abstract: This article is part of a programme on the formalisation of higher categories and the categorification of rewriting theory. Set-valued structures such as catoids are used in this context to formalise local categorical composition operations. We introduce omega-catoids as set-valued generalisations of (strict) omega-categories. We establish modal correspondences between omega-catoids and convolution omega-quantales. These are related to J\'onsson-Tarski-style dualities between relational structures and lattices with operators. Convolution omega-quantales generalise the powerset omega-Kleene algebras recently proposed for algebraic coherence proofs in higher rewriting to weighted variants in the style of category algebras. In order to capture homotopic constructions and proofs in rewriting theory, we extend these correspondances to higher catoids with a groupoid structure above some dimension, which is reflected by an involution in higher quantales.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (61)
  1. Multiple categories: The equivalence of a globular and a cubical approach. Advances in Mathematics, 170:71–118, 2002.
  2. Polygraphs: from rewriting to higher categories. London Mathematical Society Lecture Note Series, 666pp, arXiv:2312.00429, to appear, 2024.
  3. Notes on equational theories of relations. Algebra Universalis, 33, 1995.
  4. R. Brown and P. J. Higgins. The equivalence of ∞\infty∞-groupoids and crossed complexes. Cahiers de topologie et géométrie différentielle catégoriques, 22(4):371–383, 1981.
  5. C. Brink. Power structures. Algebra Universalis, 30:177–216, 1993.
  6. R. Brown. From groups to groupoids: A brief survey. Bulletin of the London Mathematical Society, 19:113–134, 1987.
  7. A. Burroni. Higher-dimensional word problems with applications to equational logic. Theoretical Computer Science, 115(1):43–62, 1991.
  8. Relational semigroups and object-free categories. CoRR, abs/2001.11895, 2020.
  9. Convolution and concurrency. Mathematical Structures in Computer Science, 31(8):918–949, 2021.
  10. Abstract strategies and coherence. In RAMiCS 2021, volume 13027 of LNCS, pages 108–125. Springer, 2021.
  11. Algebraic coherent confluence and globular Kleene algebras. Logical Methods in Computer Science, 18(4):9:1–9:43, 2022.
  12. C. Calk and G. Struth. Modal quantales, involutive quantales, dedekind quantales. Archive of Formal Proofs, July 2023. https://isa-afp.org/entries/Quantales_Converse.html, Formal proof development.
  13. C. Calk and G. Struth. Higher globular catoids and quantales. Archive of Formal Proofs, January 2024. https://isa-afp.org/entries/OmegaCatoidsQuantales.html, Formal proof development.
  14. A calculational approach to mathematical induction. Theoretical Computer Science, 179(1-2):103–135, 1997.
  15. Convolution as a unifying concept: Applications in separation logic, interval calculi, and concurrency. ACM TOCL, 17(3):15:1–15:25, 2016.
  16. Convolution algebras: Relational convolution, generalised modalities and incidence algebras. Logical Methods in Computer Science, 17(1), 2021.
  17. Algebraic notions of termination. Logical Methods in Computer Science, 7(1), 2011.
  18. J. Desharnais and G. Struth. Internal axioms for domain semirings. Science of Computer Programming, 76(3):181–203, 2011.
  19. Equational properties of Kleene algebras of relations with conversion. Theoretical Computer Science, 137(2):237–251, 1995.
  20. Languages of higher-dimensional automata. Mathematical Structures in Computer Science, 31(5):575–613, 2021.
  21. Domain semirings united. Acta Cybernetica, 25(3):575–583, 2022.
  22. A Kleene theorem for higher-dimensional automata. In CONCUR 2022, volume 243 of LIPIcs, pages 29:1–29:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
  23. Catoids and modal convolution algebras. Algebra Universalis, 84:10, 2023.
  24. S. Forest and S. Mimram. Rewriting in Gray categories with applications to coherence. Mathematical Structures in Computer Science, 32(5):574–647, 2022.
  25. S. Forest. Computational descriptions of higher categories. Phd thesis, Institut Polytechnique de Paris, 2021.
  26. P. J. Freyd and A. Scedrov. Categories, Allegories. North-Holland, 1990.
  27. N. D. Gautam. The validity of equations in complex algebras. Archiv für mathematische Logik und Grundlagenforschung, 3:117–124, 1957.
  28. Convergent presentations and polygraphic resolutions of associative algebras. Mathematische Zeitschrift, 293(1-2):113–179, 2019.
  29. J. L. Gischer. The equational theory of pomsets. Theoretical Computer Science, 61:199–224, 1988.
  30. S. Givant. Duality Theories for Boolean Algebras with Operators. Springer, 2014.
  31. Y. Guiraud and P. Malbos. Higher-dimensional categories with finite derivation type. Theory and Applications of Categories, 22(18):420–478, 2009.
  32. Y. Guiraud and P. Malbos. Higher-dimensional normalisation strategies for acyclicity. Advances in Mathematics, 231(3-4):2294–2351, 2012.
  33. Y. Guiraud and P. Malbos. Polygraphs of finite derivation type. Mathemathical Structures in Computer Science, 28(2):155–201, 2018.
  34. R. Goldblatt. Varieties of complex algebras. Annals of Pure and Applied Logic, 44:173–242, 1989.
  35. Coherence for tricategories. Memoirs of the American Mathematical Society, 117(558):vi+81, 1995.
  36. G. Grätzer and S. Whitney. Infinitary varieties of structures closed under the formation of complex structures. Colloquium Mathematicum, 48:1–5, 1984.
  37. R. Hirsch and I. Hodkinson. Relation Algebras by Games. Elsevier, 2002.
  38. P. J. Higgins. Notes on Categories and Groupoids. van Nostrand Reynold Company, 1971.
  39. Concurrent Kleene algebra and its foundations. Journal of Logic and Algebraic Programming, 80(6):266–296, 2011.
  40. Monoidal Topology: A Categorical Approach to Order, Metric and Topology. Cambridge University Press, 2014.
  41. B. Jónsson and A. Tarski. Boolean algebras with operators. Part I. American Journal of Mathematics, 73(4):891–939, 1951.
  42. B. Jónsson and A. Tarski. Boolean algebras with operators. Part II. American Journal of Mathematics, 74(1):127–162, 1952.
  43. G. Kudryavtseva and V. Mazorchuk. On multisemigroups. Portugaliae Mathematica, 71(1):47–80, 2015.
  44. M. Lucas. Cubical categories for homotopy and rewriting. Phd thesis, Université Paris 7, Sorbonne Paris Cité, 2017.
  45. M. Lucas. A cubical Squier’s theorem. Mathematical Structures in Computer Science, 30(2):159–172, 2020.
  46. Saunders MacLane. Groups, categories and duality. PNAS, 34(6):263–267, 1948.
  47. R. D. Maddux. Relation Algebras. Elsevier, 2006.
  48. S. Mac Lane. Categories for the Working Mathematician, volume 5. Springer, second edition, 1998.
  49. Single-set cubical categories and their formalisation with a proof assistant. arXiv:2401.10553, 2024.
  50. P. Malbos and I. Ren. Shuffle polygraphic resolutions for operads. Journal of the London Mathematical Society, 107(1):61–122, 2023.
  51. C. J. Mulvey and J. Wick Pelletier. A quantisation of the calculus of relations. In Proceedings of the 1991 Summer Category Meeting, Montreal, Canada, volume 13 of Conference Proceedings, Canadian Mathematical Society, pages 345–360. AMS, 1992.
  52. A. Palmigiano and R. Re. Groupoid quantales: A non-étale setting. Journal of Pure and Applied Algebra, 215(8):1945–1957, 2011.
  53. K. I. Rosenthal. Quantales and Their Applications. Longman Scientific &\&& Technical, 1990.
  54. K. I. Rosenthal. The Theory of Quantaloids. Addison Wesley Longman Limited, 1996.
  55. R. Steiner. Omega-categories and chain complexes. Homology, Homotopy and Applications, 6(1):175–200, 2004.
  56. R. Street. Limits indexed by category-valued 2222-functors. Journal of Pure and Applied Algebra, 8(2):149–181, 1976.
  57. R. Street. The algebra of oriented simplexes. Journal of Pure and Applied Algebra, 49:283–335, 1987.
  58. G. Struth. Abstract abstract reduction. Journal of Logical and Algebraic Methods in Programming, 66(2):239–270, 2006.
  59. G. Struth. Catoids, categories, groupoids. Archive of Formal Proofs, August 2023. https://isa-afp.org/entries/Catoids.html, Formal proof development.
  60. A. Tarski. On the calculus of relations. The Journal of Symbolic Logic, 6(3):73–89, 1941.
  61. Terese. Term Rewriting Systems. Cambridge University Press, 2003.
Citations (3)

Summary

We haven't generated a summary for this paper yet.