Higher Catoids, Higher Quantales and their Correspondences
Abstract: We introduce $\omega$-catoids as generalisations of (strict) $\omega$-categories and in particular the higher path categories generated by computads or polygraphs in higher-dimensional rewriting. We also introduce $\omega$-quantales that generalise the $\omega$-Kleene algebras recently proposed for algebraic coherence proofs in higher-dimensional rewriting. We then establish correspondences between $\omega$-catoids and convolution $\omega$-quantales. These are related to J\'onsson-Tarski-style dualities between relational structures and lattices with operators. We extend these correspondences to $(\omega,p)$-catoids, catoids with a groupoid structure above some dimension, and convolution $(\omega,p)$-quantales, using Dedekind quantales above some dimension to capture homotopic constructions and proofs in higher-dimensional rewriting. We also specialise them to finitely decomposable $(\omega, p)$-catoids, an appropriate setting for defining $(\omega, p)$-semirings and $(\omega, p)$-Kleene algebras. These constructions support the systematic development and justification of $\omega$-Kleene algebra and $\omega$-quantale axioms, improving on the recent approach mentioned, where axioms for $\omega$-Kleene algebras have been introduced in an ad hoc fashion.
- Multiple categories: The equivalence of a globular and a cubical approach. Advances in Mathematics, 170:71–118, 2002.
- Polygraphs: from rewriting to higher categories. London Mathematical Society Lecture Note Series, 666pp, arXiv:2312.00429, to appear, 2024.
- Notes on equational theories of relations. Algebra Universalis, 33, 1995.
- R. Brown and P. J. Higgins. The equivalence of ∞\infty∞-groupoids and crossed complexes. Cahiers de topologie et géométrie différentielle catégoriques, 22(4):371–383, 1981.
- C. Brink. Power structures. Algebra Universalis, 30:177–216, 1993.
- R. Brown. From groups to groupoids: A brief survey. Bulletin of the London Mathematical Society, 19:113–134, 1987.
- A. Burroni. Higher-dimensional word problems with applications to equational logic. Theoretical Computer Science, 115(1):43–62, 1991.
- Relational semigroups and object-free categories. CoRR, abs/2001.11895, 2020.
- Convolution and concurrency. Mathematical Structures in Computer Science, 31(8):918–949, 2021.
- Abstract strategies and coherence. In RAMiCS 2021, volume 13027 of LNCS, pages 108–125. Springer, 2021.
- Algebraic coherent confluence and globular Kleene algebras. Logical Methods in Computer Science, 18(4):9:1–9:43, 2022.
- C. Calk and G. Struth. Modal quantales, involutive quantales, dedekind quantales. Archive of Formal Proofs, July 2023. https://isa-afp.org/entries/Quantales_Converse.html, Formal proof development.
- C. Calk and G. Struth. Higher globular catoids and quantales. Archive of Formal Proofs, January 2024. https://isa-afp.org/entries/OmegaCatoidsQuantales.html, Formal proof development.
- A calculational approach to mathematical induction. Theoretical Computer Science, 179(1-2):103–135, 1997.
- Convolution as a unifying concept: Applications in separation logic, interval calculi, and concurrency. ACM TOCL, 17(3):15:1–15:25, 2016.
- Convolution algebras: Relational convolution, generalised modalities and incidence algebras. Logical Methods in Computer Science, 17(1), 2021.
- Algebraic notions of termination. Logical Methods in Computer Science, 7(1), 2011.
- J. Desharnais and G. Struth. Internal axioms for domain semirings. Science of Computer Programming, 76(3):181–203, 2011.
- Equational properties of Kleene algebras of relations with conversion. Theoretical Computer Science, 137(2):237–251, 1995.
- Languages of higher-dimensional automata. Mathematical Structures in Computer Science, 31(5):575–613, 2021.
- Domain semirings united. Acta Cybernetica, 25(3):575–583, 2022.
- A Kleene theorem for higher-dimensional automata. In CONCUR 2022, volume 243 of LIPIcs, pages 29:1–29:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
- Catoids and modal convolution algebras. Algebra Universalis, 84:10, 2023.
- S. Forest and S. Mimram. Rewriting in Gray categories with applications to coherence. Mathematical Structures in Computer Science, 32(5):574–647, 2022.
- S. Forest. Computational descriptions of higher categories. Phd thesis, Institut Polytechnique de Paris, 2021.
- P. J. Freyd and A. Scedrov. Categories, Allegories. North-Holland, 1990.
- N. D. Gautam. The validity of equations in complex algebras. Archiv für mathematische Logik und Grundlagenforschung, 3:117–124, 1957.
- Convergent presentations and polygraphic resolutions of associative algebras. Mathematische Zeitschrift, 293(1-2):113–179, 2019.
- J. L. Gischer. The equational theory of pomsets. Theoretical Computer Science, 61:199–224, 1988.
- S. Givant. Duality Theories for Boolean Algebras with Operators. Springer, 2014.
- Y. Guiraud and P. Malbos. Higher-dimensional categories with finite derivation type. Theory and Applications of Categories, 22(18):420–478, 2009.
- Y. Guiraud and P. Malbos. Higher-dimensional normalisation strategies for acyclicity. Advances in Mathematics, 231(3-4):2294–2351, 2012.
- Y. Guiraud and P. Malbos. Polygraphs of finite derivation type. Mathemathical Structures in Computer Science, 28(2):155–201, 2018.
- R. Goldblatt. Varieties of complex algebras. Annals of Pure and Applied Logic, 44:173–242, 1989.
- Coherence for tricategories. Memoirs of the American Mathematical Society, 117(558):vi+81, 1995.
- G. Grätzer and S. Whitney. Infinitary varieties of structures closed under the formation of complex structures. Colloquium Mathematicum, 48:1–5, 1984.
- R. Hirsch and I. Hodkinson. Relation Algebras by Games. Elsevier, 2002.
- P. J. Higgins. Notes on Categories and Groupoids. van Nostrand Reynold Company, 1971.
- Concurrent Kleene algebra and its foundations. Journal of Logic and Algebraic Programming, 80(6):266–296, 2011.
- Monoidal Topology: A Categorical Approach to Order, Metric and Topology. Cambridge University Press, 2014.
- B. Jónsson and A. Tarski. Boolean algebras with operators. Part I. American Journal of Mathematics, 73(4):891–939, 1951.
- B. Jónsson and A. Tarski. Boolean algebras with operators. Part II. American Journal of Mathematics, 74(1):127–162, 1952.
- G. Kudryavtseva and V. Mazorchuk. On multisemigroups. Portugaliae Mathematica, 71(1):47–80, 2015.
- M. Lucas. Cubical categories for homotopy and rewriting. Phd thesis, Université Paris 7, Sorbonne Paris Cité, 2017.
- M. Lucas. A cubical Squier’s theorem. Mathematical Structures in Computer Science, 30(2):159–172, 2020.
- Saunders MacLane. Groups, categories and duality. PNAS, 34(6):263–267, 1948.
- R. D. Maddux. Relation Algebras. Elsevier, 2006.
- S. Mac Lane. Categories for the Working Mathematician, volume 5. Springer, second edition, 1998.
- Single-set cubical categories and their formalisation with a proof assistant. arXiv:2401.10553, 2024.
- P. Malbos and I. Ren. Shuffle polygraphic resolutions for operads. Journal of the London Mathematical Society, 107(1):61–122, 2023.
- C. J. Mulvey and J. Wick Pelletier. A quantisation of the calculus of relations. In Proceedings of the 1991 Summer Category Meeting, Montreal, Canada, volume 13 of Conference Proceedings, Canadian Mathematical Society, pages 345–360. AMS, 1992.
- A. Palmigiano and R. Re. Groupoid quantales: A non-étale setting. Journal of Pure and Applied Algebra, 215(8):1945–1957, 2011.
- K. I. Rosenthal. Quantales and Their Applications. Longman Scientific &\&& Technical, 1990.
- K. I. Rosenthal. The Theory of Quantaloids. Addison Wesley Longman Limited, 1996.
- R. Steiner. Omega-categories and chain complexes. Homology, Homotopy and Applications, 6(1):175–200, 2004.
- R. Street. Limits indexed by category-valued 2222-functors. Journal of Pure and Applied Algebra, 8(2):149–181, 1976.
- R. Street. The algebra of oriented simplexes. Journal of Pure and Applied Algebra, 49:283–335, 1987.
- G. Struth. Abstract abstract reduction. Journal of Logical and Algebraic Methods in Programming, 66(2):239–270, 2006.
- G. Struth. Catoids, categories, groupoids. Archive of Formal Proofs, August 2023. https://isa-afp.org/entries/Catoids.html, Formal proof development.
- A. Tarski. On the calculus of relations. The Journal of Symbolic Logic, 6(3):73–89, 1941.
- Terese. Term Rewriting Systems. Cambridge University Press, 2003.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.