Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Polynomial-Delay Enumeration of Large Maximal Common Independent Sets in Two Matroids and Beyond (2307.08948v2)

Published 18 Jul 2023 in math.CO and cs.DS

Abstract: Finding a maximum cardinality common independent set in two matroids (also known as \textsc{Matroid Intersection}) is a classical combinatorial optimization problem, which generalizes several well-known problems, such as finding a maximum bipartite matching, a maximum colorful forest, and an arborescence in directed graphs. Enumerating all maximal common independent sets in two (or more) matroids is a classical enumeration problem. In this paper, we address an intersection'' of these problems: Given two matroids and a threshold $\tau$, the goal is to enumerate all maximal common independent sets in the matroids with cardinality at least $\tau$. We show that this problem can be solved in polynomial delay and polynomial space. Moreover, our technique can be extended to a more general problem, which is relevant to Matroid Matching. We give a polynomial-delay and polynomial-space algorithm for enumerating all maximalmatchings'' with cardinality at least $\tau$, assuming that the optimization counterpart is ``tractable'' in a certain sense. This extension allows us to enumerate small minimal connected vertex covers in subcubic graphs. We also discuss a framework to convert enumeration with cardinality constraints into ranked enumeration.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. D. Avis and K. Fukuda. Reverse search for enumeration. Discret. Appl. Math., 65(1):21 – 46, 1996.
  2. Optimal listing of cycles and st-paths in undirected graphs. In Proc. of SODA 2013, pages 1884–1896. SIAM, 2013.
  3. Matroid intersections, polymatroid inequalities, and related problems. In Proc. of MFCS 2002, pages 143–154, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.
  4. F. Capelli and Y. Strozecki. Geometric Amortization of Enumeration Algorithms. In Proc. of STACS 2023, volume 254 of LIPIcs, pages 18:1–18:22, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
  5. Extension of some edge graph problems: Standard and parameterized complexity. In Proc. of FCT 2019, volume 11651 of LNCS, pages 185–200. Springer, 2019.
  6. Listing maximal independent sets with minimal space and bounded delay. In Proc. of SPIRE 2017, volume 10508 of LNCS, pages 144–160. Springer, 2017.
  7. W. H. Cunningham. Improved bounds for matroid partition and intersection algorithms. SIAM J. Comput., 15(4):948–957, 1986.
  8. S. Deep and P. Koutris. Ranked Enumeration of Conjunctive Query Results. In Proc. of ICDT 2021, volume 186 of LIPIcs, pages 5:1–5:19, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
  9. J. Edmonds. Paths, trees, and flowers. Can. J. Math., 17:449–467, 1965.
  10. J. Edmonds. Submodular Functions, Matroids, and Certain Polyhedra, pages 11–26. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.
  11. D. Eppstein. k𝑘kitalic_k-Best Enumeration. In Encyclopedia of Algorithms, pages 1003–1006. Springer, New York, NY, 2016.
  12. K. Fukuda and M. Namiki. Finding all common bases in two matroids. Discret. Appl. Math., 56(2):231–243, 1995. Fifth Franco-Japanese Days.
  13. H. N. Gabow and M. Stallmann. An augmenting path algorithm for linear matroid parity. Combinatorica, 6(2):123–150, 1986.
  14. P. M. Jensen and B. Korte. Complexity of matroid property algorithms. SIAM J. Comput., 11(1):184–190, 1982.
  15. On generating all maximal independent sets. Inform. Process. Lett., 27(3):119 – 123, 1988.
  16. Polynomial Delay Algorithm for Listing Minimal Edge Dominating Sets in Graphs. In Proc. of WADS 2015, pages 446–457, 2015.
  17. Enumerating spanning and connected subsets in graphs and matroids. In Proc. of ESA 2006, volume 4168 of LNCS, pages 444–455, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.
  18. Generating Cut Conjunctions in Graphs and Related Problems. Algorithmica, 51(3):239–263, 2008.
  19. On the complexity of some enumeration problems for matroids. SIAM J. Discret. Math., 19(4):966–984, 2005.
  20. Efficient constant-factor approximate enumeration of minimal subsets for monotone properties with weight constraints. CoRR, abs/2009.08830, 2020.
  21. Polynomial-delay and polynomial-space enumeration of large maximal matchings. In Proc. of WG 2022, volume 13453 of LNCS, pages 342–355, Cham, 2022. Springer International Publishing.
  22. Polynomial-Delay Enumeration of Large Maximal Common Independent Sets in Two Matroids. In Proc. of MFCS 2023, volume 272 of LIPIcs, pages 58:1–58:14, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
  23. T. Korhonen. Listing small minimal separators of a graph. CoRR, abs/2012.09153, 2020.
  24. K. Kurita and Y. Kobayashi. Efficient Enumerations for Minimal Multicuts and Multiway Cuts. In Proc. of MFCS 2020, volume 170 of LIPIcs, pages 60:1–60:14, Dagstuhl, Germany, 2020. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
  25. E. L. Lawler. Matroid intersection algorithms. Math. Program., 9(1):31–56, 1975.
  26. Generating All Maximal Independent Sets: NP-Hardness and Polynomial-Time Algorithms. SIAM J. Comput., 9(3):558–565, 1980.
  27. K. Makino and T. Uno. New algorithms for enumerating all maximal cliques. In Proc. SWAT 2004, volume 3111 of LNCS, pages 260–272. Springer, 2004.
  28. J. Oxley. Matroid theory, volume 3. Oxford University Press, USA, 2006.
  29. Ranked Enumeration of Minimal Triangulations. In Proc. of PODS 2019, pages 74–88, 2019.
  30. Bounds on backtrack algorithms for listing cycles, paths, and spanning trees. Networks, 5(3):237–252, 1975.
  31. A New Algorithm for Generating All the Maximal Independent Sets. SIAM J. Comput., 6(3):505–517, 1977.
  32. On the nonseparating independent set problem and feedback set problem for graphs with no vertex degree exceeding three. Discrete Math., 72(1):355–360, 1988.
  33. T. Uno. Algorithms for enumerating all perfect, maximum and maximal matchings in bipartite graphs. In Proc. of ISSAC 1997, volume 1350 of LNCS, pages 92–101, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.
  34. T. Uno. A fast algorithm for enumerating bipartite perfect matchings. In Proc. of ISSAC 2001, volume 2223 of LNCS, pages 367–379, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.
Citations (1)

Summary

We haven't generated a summary for this paper yet.