Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Novel Application of Conditional Normalizing Flows: Stellar Age Inference with Gyrochronology (2307.08753v1)

Published 17 Jul 2023 in astro-ph.SR, astro-ph.EP, astro-ph.IM, and cs.LG

Abstract: Stellar ages are critical building blocks of evolutionary models, but challenging to measure for low mass main sequence stars. An unexplored solution in this regime is the application of probabilistic machine learning methods to gyrochronology, a stellar dating technique that is uniquely well suited for these stars. While accurate analytical gyrochronological models have proven challenging to develop, here we apply conditional normalizing flows to photometric data from open star clusters, and demonstrate that a data-driven approach can constrain gyrochronological ages with a precision comparable to other standard techniques. We evaluate the flow results in the context of a Bayesian framework, and show that our inferred ages recover literature values well. This work demonstrates the potential of a probabilistic data-driven solution to widen the applicability of gyrochronological stellar dating.

Citations (1)

Summary

We haven't generated a summary for this paper yet.