Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

National Origin Discrimination in Deep-learning-powered Automated Resume Screening (2307.08624v1)

Published 13 Jul 2023 in cs.CL

Abstract: Many companies and organizations have started to use some form of AIenabled auto mated tools to assist in their hiring process, e.g. screening resumes, interviewing candi dates, performance evaluation. While those AI tools have greatly improved human re source operations efficiency and provided conveniences to job seekers as well, there are increasing concerns on unfair treatment to candidates, caused by underlying bias in AI systems. Laws around equal opportunity and fairness, like GDPR, CCPA, are introduced or under development, in attempt to regulate AI. However, it is difficult to implement AI regulations in practice, as technologies are constantly advancing and the risk perti nent to their applications can fail to be recognized. This study examined deep learning methods, a recent technology breakthrough, with focus on their application to automated resume screening. One impressive performance of deep learning methods is the represen tation of individual words as lowdimensional numerical vectors, called word embedding, which are learned from aggregated global wordword cooccurrence statistics from a cor pus, like Wikipedia or Google news. The resulting word representations possess interest ing linear substructures of the word vector space and have been widely used in down stream tasks, like resume screening. However, word embedding inherits and reinforces the stereotyping from the training corpus, as deep learning models essentially learn a probability distribution of words and their relations from history data. Our study finds out that if we rely on such deeplearningpowered automated resume screening tools, it may lead to decisions favoring or disfavoring certain demographic groups and raise eth ical, even legal, concerns. To address the issue, we developed bias mitigation method. Extensive experiments on real candidate resumes are conducted to validate our study

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Sihang Li (32 papers)
  2. Kuangzheng Li (2 papers)
  3. Haibing Lu (5 papers)
Citations (3)