Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-class point cloud completion networks for 3D cardiac anatomy reconstruction from cine magnetic resonance images (2307.08535v2)

Published 17 Jul 2023 in eess.IV, cs.CV, and cs.LG

Abstract: Cine magnetic resonance imaging (MRI) is the current gold standard for the assessment of cardiac anatomy and function. However, it typically only acquires a set of two-dimensional (2D) slices of the underlying three-dimensional (3D) anatomy of the heart, thus limiting the understanding and analysis of both healthy and pathological cardiac morphology and physiology. In this paper, we propose a novel fully automatic surface reconstruction pipeline capable of reconstructing multi-class 3D cardiac anatomy meshes from raw cine MRI acquisitions. Its key component is a multi-class point cloud completion network (PCCN) capable of correcting both the sparsity and misalignment issues of the 3D reconstruction task in a unified model. We first evaluate the PCCN on a large synthetic dataset of biventricular anatomies and observe Chamfer distances between reconstructed and gold standard anatomies below or similar to the underlying image resolution for multiple levels of slice misalignment. Furthermore, we find a reduction in reconstruction error compared to a benchmark 3D U-Net by 32% and 24% in terms of Hausdorff distance and mean surface distance, respectively. We then apply the PCCN as part of our automated reconstruction pipeline to 1000 subjects from the UK Biobank study in a cross-domain transfer setting and demonstrate its ability to reconstruct accurate and topologically plausible biventricular heart meshes with clinical metrics comparable to the previous literature. Finally, we investigate the robustness of our proposed approach and observe its capacity to successfully handle multiple common outlier conditions.

Citations (12)

Summary

We haven't generated a summary for this paper yet.