Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Local Inaccessibility of Random Classical Information : Conditional Nonlocality demands Entanglement (2307.08457v3)

Published 17 Jul 2023 in quant-ph

Abstract: Discrimination of quantum states under local operations and classical communication (LOCC) is an intriguing question in the context of local retrieval of classical information, encoded in the multipartite quantum systems. All the local quantum state discrimination premises, considered so far, mimic a basic communication set-up, where the spatially separated decoding devices are independent of any additional input. Here, exploring a generalized communication scenario we introduce a framework for input-dependent local quantum state discrimination, which we call local random authentication (LRA). Referring to the term nonlocality, often used to indicate the impossibility of local state discrimination, we coin the term conditional nonlocality for the impossibility associated with the task LRA. We report that conditional nonlocality necessitates the presence of entangled states in the ensemble, a feature absent from erstwhile nonlocality arguments based on local state discrimination. Conversely, all the states in a complete basis set being entangled implies conditional nonlocality. However, the impossibility of LRA also exhibits more conditional nonlocality with less entanglement. The relation between the possibility of LRA and local state discrimination for sets of multipartite quantum states, both in the perfect and conclusive cases, has also been established. The results highlight a completely new aspect of the interplay between the security of information in a network and quantum entanglement under the LOCC paradigm.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. A. S. Holevo, On the capacity of quantum communication channel, Probl. Inform. Transm. 15, 247 (1979).
  2. C. A. Fuchs, Nonorthogonal quantum states maximize classical information capacity, Phys. Rev. Lett. 79, 1162 (1997).
  3. A. S. Holevo, The capacity of the quantum channel with general signal states, IEEE Transactions on Information Theory 44, 269 (1998).
  4. M. B. Hastings, Superadditivity of communication capacity using entangled inputs, Nature Physics 5, 255 (2009).
  5. J. Watrous, Bipartite subspaces having no bases distinguishable by local operations and classical communication, Phys. Rev. Lett. 95, 080505 (2005).
  6. S. Bandyopadhyay, S. Ghosh, and G. Kar, Locc distinguishability of unilaterally transformable quantum states, New Journal of Physics 13, 123013 (2011).
  7. E. Chitambar, R. Duan, and M.-H. Hsieh, When do local operations and classical communication suffice for two-qubit state discrimination?, IEEE Transactions on Information Theory 60, 1549 (2014).
  8. M. Hillery, V. Bužek, and A. Berthiaume, Quantum secret sharing, Phys. Rev. A 59, 1829 (1999).
  9. B. M. Terhal, D. P. DiVincenzo, and D. W. Leung, Hiding bits in bell states, Phys. Rev. Lett. 86, 5807 (2001).
  10. T. Eggeling and R. F. Werner, Hiding classical data in multipartite quantum states, Phys. Rev. Lett. 89, 097905 (2002).
  11. W. Matthews, S. Wehner, and A. Winter, Distinguishability of quantum states under restricted families of measurements with an application to quantum data hiding, Communications in Mathematical Physics 291, 813 (2009).
  12. R. Rahaman and M. G. Parker, Quantum scheme for secret sharing based on local distinguishability, Phys. Rev. A 91, 022330 (2015).
  13. Z.-C. Zhang and X. Zhang, Strong quantum nonlocality in multipartite quantum systems, Phys. Rev. A 99, 062108 (2019).
  14. P. E. Frenkel and M. Weiner, Classical information storage in an n-level quantum system, Commun. Math. Phys. 340, 563 (2015).
  15. A. S. Holevo, Bounds for the quantity of information transmitted by a quantum communication channel, Problemy Peredachi Informatsii 9, 3 (1973).
  16. S. Wiesner, Conjugate coding, ACM Sigact News 15, 78 (1983).
  17. In the present scenario of unrestricted classical communication, distribution of classical inputs among the spatially separated receivers is equivalent to its broadcasting,  .
  18. S. De Rinaldis, Distinguishability of complete and unextendible product bases, Phys. Rev. A 70, 022309 (2004).
  19. J. Niset and N. J. Cerf, Multipartite nonlocality without entanglement in many dimensions, Phys. Rev. A 74, 052103 (2006).
  20. Y. Feng and Y. Shi, Characterizing locally indistinguishable orthogonal product states, IEEE Transactions on Information Theory 55, 2799 (2009).
  21. S. Halder, Several nonlocal sets of multipartite pure orthogonal product states, Phys. Rev. A 98, 022303 (2018).
  22. M.-S. Li and Z.-J. Zheng, Genuine hidden nonlocality without entanglement: from the perspective of local discrimination, New Journal of Physics 24, 043036 (2022).
  23. A. Chefles, Unambiguous discrimination between linearly independent quantum states, Physics Letters A 239, 339 (1998).
  24. N. Yu, R. Duan, and M. Ying, Four locally indistinguishable ququad-ququad orthogonal maximally entangled states, Phys. Rev. Lett. 109, 020506 (2012).
  25. S. M. Cohen, Class of unambiguous state discrimination problems achievable by separable measurements but impossible by local operations and classical communication, Phys. Rev. A 91, 012321 (2015).
  26. N. Yu, R. Duan, and M. Ying, Distinguishability of quantum states by positive operator-valued measures with positive partial transpose, IEEE Transactions on Information Theory 60, 2069 (2014).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com