Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Orientation Distribution Fields for Estimation and Uncertainty Quantification in Diffusion MRI (2307.08138v2)

Published 16 Jul 2023 in eess.IV, stat.AP, and stat.CO

Abstract: Inferring brain connectivity and structure \textit{in-vivo} requires accurate estimation of the orientation distribution function (ODF), which encodes key local tissue properties. However, estimating the ODF from diffusion MRI (dMRI) signals is a challenging inverse problem due to obstacles such as significant noise, high-dimensional parameter spaces, and sparse angular measurements. In this paper, we address these challenges by proposing a novel deep-learning based methodology for continuous estimation and uncertainty quantification of the spatially varying ODF field. We use a neural field (NF) to parameterize a random series representation of the latent ODFs, implicitly modeling the often ignored but valuable spatial correlation structures in the data, and thereby improving efficiency in sparse and noisy regimes. An analytic approximation to the posterior predictive distribution is derived which can be used to quantify the uncertainty in the ODF estimate at any spatial location, avoiding the need for expensive resampling-based approaches that are typically employed for this purpose. We present empirical evaluations on both synthetic and real in-vivo diffusion data, demonstrating the advantages of our method over existing approaches.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (74)
  1. Spatially variant noise estimation in mri: A homomorphic approach. Medical Image Analysis 20(1), 184–197.
  2. Non-parametric representation and prediction of single- and multi-shell diffusion-weighted MRI data using Gaussian processes. Neuroimage 122, 166–176.
  3. In vivo fiber tractography using dt-mri data. Magnetic Resonance in Medicine 44(4), 625–632.
  4. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111(3), 209–219.
  5. Position-orientation adaptive smoothing of diffusion weighted magnetic resonance data (POAS). Med Image Anal 16(6), 1142–1155.
  6. Adaptive smoothing of multi-shell diffusion weighted magnetic resonance data by msPOAS. Neuroimage 95, 90–105.
  7. Probabilistic streamline q-ball tractography using the residual bootstrap. Neuroimage 39(1), 215–222.
  8. Kernel regression estimation of fiber orientation mixtures in diffusion mri. NeuroImage 127, 158–172.
  9. Denoising of diffusion mri data via graph framelet matching in x-q space. IEEE Transactions on Medical Imaging 38(12), 2838–2848.
  10. Noise reduction in diffusion mri using non-local self-similar information in joint xq space. Medical Image Analysis 53, 79–94.
  11. Complex diffusion-weighted image estimation via matrix recovery under general noise models. NeuroImage 200, 391–404.
  12. Depth for curve data and applications. Journal of the American Statistical Association 116(536), 1881–1897.
  13. Descoteaux, M. (2015). High Angular Resolution Diffusion Imaging (HARDI), pp.  1–25. John Wiley & Sons, Ltd.
  14. Regularized, fast, and robust analytical Q-ball imaging. Magn Reson Med 58(3), 497–510.
  15. Multiplicative filter networks. In International Conference on Learning Representations.
  16. Sample-then-optimize posterior sampling for bayesian linear models. In Neural Information Processing Systems.
  17. The mahalanobis distance for functional data with applications to classification. Technometrics 57(2), 281–291.
  18. A nonparametric Riemannian framework for processing high angular resolution diffusion images and its applications to ODF-based morphometry. Neuroimage 56(3), 1181–1201.
  19. Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21(2), 215–223.
  20. Generalized autocalibrating partially parallel acquisitions (grappa). Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine 47(6), 1202–1210.
  21. The rician distribution of noisy mri data. Magnetic Resonance in Medicine 34(6), 910–914.
  22. Isotropic covariance functions on spheres: Some properties and modeling considerations. Journal of Multivariate Analysis 143, 143–152.
  23. Using the model-based residual bootstrap to quantify uncertainty in fiber orientations from q𝑞qitalic_q-ball analysis. IEEE Transactions on Medical Imaging 28(4), 535–550.
  24. Henkelman, R. M. (1985). Measurement of signal intensities in the presence of noise in MR images. Med Phys 12(2), 232–233.
  25. Theoretical foundations of functional data analysis, with an introduction to linear operators. John Wiley & Sons.
  26. Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magnetic Resonance in Medicine 42(3), 515–525.
  27. Jones, D. K. (2008). Tractography gone wild: Probabilistic fibre tracking using the wild bootstrap with diffusion tensor mri. IEEE Transactions on Medical Imaging 27(9), 1268–1274.
  28. Bootstrapping for penalized spline regression. Journal of Computational and Graphical Statistics 18(1), 126–146.
  29. A signal transformational framework for breaking the noise floor and its applications in mri. Journal of Magnetic Resonance 197(2), 108–119.
  30. Lai, M.-J. and L. L. Schumaker (2007). Spline Functions on Triangulations. Encyclopedia of Mathematics and its Applications. Cambridge University Press.
  31. A robust variational approach for simultaneous smoothing and estimation of DTI. Neuroimage 67, 33–41.
  32. Lossy compression of multidimensional medical images using sinusoidal activation networks: An evaluation study. In Computational Diffusion MRI, Cham, pp.  26–37. Springer Nature Switzerland.
  33. Martínez-Hernández, I. and M. G. Genton (2020). Recent developments in complex and spatially correlated functional data. Brazilian Journal of Probability and Statistics 34(2), 204 – 229.
  34. Propagating uncertainty across cascaded medical imaging tasks for improved deep learning inference. IEEE Transactions on Medical Imaging 41(2), 360–373.
  35. A Universal Kriging predictor for spatially dependent functional data of a Hilbert Space. Electronic Journal of Statistics 7(none), 2209 – 2240.
  36. On approximation of orientation distributions by means of spherical ridgelets. IEEE Trans Image Process 19(2), 461–477.
  37. Spatially regularized compressed sensing for high angular resolution diffusion imaging. IEEE Transactions on Medical Imaging 30(5), 1100–1115.
  38. Nerf: Representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106.
  39. Implicit neural representation in medical imaging: A comparative survey. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.  2381–2391.
  40. Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans. Graph. 41(4), 102:1–102:15.
  41. Sparse Reconstruction Challenge for diffusion MRI: Validation on a physical phantom to determine which acquisition scheme and analysis method to use? Medical Image Analysis 26(1), 316–331.
  42. Quantifying brain microstructure with diffusion mri: Theory and parameter estimation. NMR in Biomedicine 32(4), e3998.
  43. Rotationally-invariant mapping of scalar and orientational metrics of neuronal microstructure with diffusion mri. NeuroImage 174, 518–538.
  44. Handbook of Neuroimaging Data Analysis (1st ed.). Chapman and Hall/CRC.
  45. Low snr in diffusion mri models. Journal of the American Statistical Association 111(516), 1480–1490.
  46. The funk–radon transform for hyperplane sections through a common point. Analysis and Mathematical Physics 10(3), 38.
  47. On the spectral bias of neural networks. In K. Chaudhuri and R. Salakhutdinov (Eds.), Proceedings of the 36th International Conference on Machine Learning, Volume 97 of Proceedings of Machine Learning Research, pp.  5301–5310. PMLR.
  48. Spatial hardi: Improved visualization of complex white matter architecture with bayesian spatial regularization. NeuroImage 54(1), 396–409.
  49. SNR-enhanced diffusion MRI with structure-preserving low-rank denoising in reproducing kernel Hilbert spaces. Magn Reson Med 86(3), 1614–1632.
  50. Rasmussen, C. E. and C. K. I. Williams (2005). Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning). The MIT Press.
  51. Wire: Wavelet implicit neural representations. arXiv: cs.CV.
  52. Denoising of diffusion mri in the cervical spinal cord – effects of denoising strategy and acquisition on intra-cord contrast, signal modeling, and feature conspicuity. NeuroImage 266, 119826.
  53. False discovery rate analysis of brain diffusion direction maps. The Annals of Applied Statistics 2(1), 153–175.
  54. A progressive approach for uncertainty visualization in diffusion tensor imaging. Computer Graphics Forum 40(3), 411–422.
  55. Implicit neural representations with periodic activation functions. In Proceedings of the 34th International Conference on Neural Information Processing Systems, NIPS’20, Red Hook, NY, USA. Curran Associates Inc.
  56. Bayesian uncertainty quantification in linear models for diffusion mri. NeuroImage 175, 272–285.
  57. Practical bayesian optimization of machine learning algorithms. In F. Pereira, C. Burges, L. Bottou, and K. Weinberger (Eds.), Advances in Neural Information Processing Systems, Volume 25. Curran Associates, Inc.
  58. Scalable bayesian optimization using deep neural networks. In Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37, ICML’15, pp.  2171–2180. JMLR.org.
  59. Dictionary learning on the manifold of square root densities and application to reconstruction of diffusion propagator fields. In J. C. Gee, S. Joshi, K. M. Pohl, W. M. Wells, and L. Zöllei (Eds.), Information Processing in Medical Imaging, Berlin, Heidelberg, pp.  619–631. Springer Berlin Heidelberg.
  60. Block-NeRF: Scalable large scene neural view synthesis. arXiv: cs.CV.
  61. Fourier features let networks learn high frequency functions in low dimensional domains. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin (Eds.), Advances in Neural Information Processing Systems, Volume 33, pp.  7537–7547. Curran Associates, Inc.
  62. Uncertainty modelling in deep learning for safer neuroimage enhancement: Demonstration in diffusion mri. NeuroImage 225, 117366.
  63. Mrtrix: diffusion tractography in crossing fiber regions. International journal of imaging systems and technology 22(1), 53–66.
  64. Resolving crossing fibres using constrained spherical deconvolution: validation using diffusion-weighted imaging phantom data. Neuroimage 42(2), 617–625.
  65. Tuch, D. S. (2004). Q‐ball imaging. Magnetic Resonance in Medicine 52, 1358–1372.
  66. Denoising of diffusion mri using random matrix theory. NeuroImage 142, 394–406.
  67. Noninvasive quantification of axon radii using diffusion mri. Elife 9, e49855.
  68. In vivo human whole-brain connectom diffusion mri dataset at 760 µm isotropic resolution. Scientific Data 8(1), 122.
  69. Neural fields in visual computing and beyond. Computer Graphics Forum 41(2), 641–676.
  70. Uncertainty estimation in diffusion mri using the nonlocal bootstrap. IEEE Transactions on Medical Imaging 33(8), 1627–1640.
  71. Estimation of fiber orientations using neighborhood information. Medical Image Analysis 32, 243–256.
  72. Spatial shrinkage estimation of diffusion tensors on diffusion-weighted imaging data. Journal of the American Statistical Association 108(503), 864–875.
  73. A structured dictionary perspective on implicit neural representations. arXiv:cs.LG.
  74. Quantitative mapping of the brain’s structural connectivity using diffusion mri tractography: A review. NeuroImage 249, 118870.
Citations (6)

Summary

We haven't generated a summary for this paper yet.