Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bivariate DeepKriging for Large-scale Spatial Interpolation of Wind Fields (2307.08038v2)

Published 16 Jul 2023 in stat.ML, cs.LG, and physics.ao-ph

Abstract: High spatial resolution wind data are essential for a wide range of applications in climate, oceanographic and meteorological studies. Large-scale spatial interpolation or downscaling of bivariate wind fields having velocity in two dimensions is a challenging task because wind data tend to be non-Gaussian with high spatial variability and heterogeneity. In spatial statistics, cokriging is commonly used for predicting bivariate spatial fields. However, the cokriging predictor is not optimal except for Gaussian processes. Additionally, cokriging is computationally prohibitive for large datasets. In this paper, we propose a method, called bivariate DeepKriging, which is a spatially dependent deep neural network (DNN) with an embedding layer constructed by spatial radial basis functions for bivariate spatial data prediction. We then develop a distribution-free uncertainty quantification method based on bootstrap and ensemble DNN. Our proposed approach outperforms the traditional cokriging predictor with commonly used covariance functions, such as the linear model of co-regionalization and flexible bivariate Mat\'ern covariance. We demonstrate the computational efficiency and scalability of the proposed DNN model, with computations that are, on average, 20 times faster than those of conventional techniques. We apply the bivariate DeepKriging method to the wind data over the Middle East region at 506,771 locations. The prediction performance of the proposed method is superior over the cokriging predictors and dramatically reduces computation time.

Citations (2)

Summary

We haven't generated a summary for this paper yet.