Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Lie derivative and Noether's theorem on the aromatic bicomplex for the study of volume-preserving numerical integrators (2307.07984v3)

Published 16 Jul 2023 in math.NA and cs.NA

Abstract: The aromatic bicomplex is an algebraic tool based on aromatic Butcher trees and used in particular for the explicit description of volume-preserving affine-equivariant numerical integrators. The present work defines new tools inspired from variational calculus such as the Lie derivative, different concepts of symmetries, and Noether's theory in the context of aromatic forests. The approach allows to draw a correspondence between aromatic volume-preserving methods and symmetries on the Euler-Lagrange complex, to write Noether's theorem in the aromatic context, and to describe the aromatic B-series of volume-preserving methods explicitly with the Lie derivative.

Citations (3)

Summary

We haven't generated a summary for this paper yet.