Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph Automorphism Group Equivariant Neural Networks (2307.07810v2)

Published 15 Jul 2023 in cs.LG, math.CO, math.RT, and stat.ML

Abstract: Permutation equivariant neural networks are typically used to learn from data that lives on a graph. However, for any graph $G$ that has $n$ vertices, using the symmetric group $S_n$ as its group of symmetries does not take into account the relations that exist between the vertices. Given that the actual group of symmetries is the automorphism group Aut$(G)$, we show how to construct neural networks that are equivariant to Aut$(G)$ by obtaining a full characterisation of the learnable, linear, Aut$(G)$-equivariant functions between layers that are some tensor power of $\mathbb{R}{n}$. In particular, we find a spanning set of matrices for these layer functions in the standard basis of $\mathbb{R}{n}$. This result has important consequences for learning from data whose group of symmetries is a finite group because a theorem by Frucht (1938) showed that any finite group is isomorphic to the automorphism group of a graph.

Summary

We haven't generated a summary for this paper yet.