Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Promotion/Inhibition Effects in Networks: A Model with Negative Probabilities (2307.07738v2)

Published 15 Jul 2023 in q-bio.MN, cs.LG, cs.SY, and eess.SY

Abstract: Biological networks often encapsulate promotion/inhibition as signed edge-weights of a graph. Nodes may correspond to genes assigned expression levels (mass) of respective proteins. The promotion/inhibition nature of co-expression between nodes is encoded in the sign of the corresponding entry of a sign-indefinite adjacency matrix, though the strength of such co-expression (i.e., the precise value of edge weights) cannot typically be directly measured. Herein we address the inverse problem to determine network edge-weights based on a sign-indefinite adjacency and expression levels at the nodes. While our motivation originates in gene networks, the framework applies to networks where promotion/inhibition dictates a stationary mass distribution at the nodes. In order to identify suitable edge-weights we adopt a framework of negative probabilities,'' advocated by P.\ Dirac and R.\ Feynman, and we set up a likelihood formalism to obtain values for the sought edge-weights. The proposed optimization problem can be solved via a generalization of the well-known Sinkhorn algorithm; in our setting the Sinkhorn-typediagonal scalings'' are multiplicative or inverse-multiplicative, depending on the sign of the respective entries in the adjacency matrix, with value computed as the positive root of a quadratic polynomial.

Citations (3)

Summary

We haven't generated a summary for this paper yet.