Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Abstracting Concept-Changing Rules for Solving Raven's Progressive Matrix Problems (2307.07734v1)

Published 15 Jul 2023 in cs.AI

Abstract: The abstract visual reasoning ability in human intelligence benefits discovering underlying rules in the novel environment. Raven's Progressive Matrix (RPM) is a classic test to realize such ability in machine intelligence by selecting from candidates. Recent studies suggest that solving RPM in an answer-generation way boosts a more in-depth understanding of rules. However, existing generative solvers cannot discover the global concept-changing rules without auxiliary supervision (e.g., rule annotations and distractors in candidate sets). To this end, we propose a deep latent variable model for Concept-changing Rule ABstraction (CRAB) by learning interpretable concepts and parsing concept-changing rules in the latent space. With the iterative learning process, CRAB can automatically abstract global rules shared on the dataset on each concept and form the learnable prior knowledge of global rules. CRAB outperforms the baselines trained without auxiliary supervision in the arbitrary-position answer generation task and achieves comparable and even higher accuracy than the compared models trained with auxiliary supervision. Finally, we conduct experiments to illustrate the interpretability of CRAB in concept learning, answer selection, and global rule abstraction.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Fan Shi (26 papers)
  2. Bin Li (514 papers)
  3. Xiangyang Xue (169 papers)
Citations (8)