Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reconstruction of 3-Axis Seismocardiogram from Right-to-left and Head-to-foot Components Using A Long Short-Term Memory Network (2307.07566v2)

Published 14 Jul 2023 in physics.med-ph, cs.LG, and eess.SP

Abstract: This pilot study aims to develop a deep learning model for predicting seismocardiogram (SCG) signals in the dorsoventral direction from the SCG signals in the right-to-left and head-to-foot directions ($\textrm{SCG}_x$ and $\textrm{SCG}_y$). The dataset used for the training and validation of the model was obtained from 15 healthy adult subjects. The SCG signals were recorded using tri-axial accelerometers placed on the chest of each subject. The signals were then segmented using electrocardiogram R waves, and the segments were downsampled, normalized, and centered around zero. The resulting dataset was used to train and validate a long short-term memory (LSTM) network with two layers and a dropout layer to prevent overfitting. The network took as input 100-time steps of $\textrm{SCG}_x$ and $\textrm{SCG}_y$, representing one cardiac cycle, and outputted a vector that mapped to the target variable being predicted. The results showed that the LSTM model had a mean square error of 0.09 between the predicted and actual SCG segments in the dorsoventral direction. The study demonstrates the potential of deep learning models for reconstructing 3-axis SCG signals using the data obtained from dual-axis accelerometers.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. C. W. Tsao, A. W. Aday, Z. I. Almarzooq et al., “Heart disease and stroke statistics—2023 update: A report from the american heart association,” Circulation, vol. 147, no. 8, pp. e93–e621, 2023.
  2. A. Taebi and H. A. Mansy, “Time-frequency distribution of seismocardiographic signals: A comparative study,” Bioengineering, vol. 4, no. 2, p. 32, 2017.
  3. J. M. Zanetti and D. M. Salerno, “Seismocardiography: a technique for recording precordial acceleration,” in Computer-Based Medical Systems-Proceedings of the Fourth Annual IEEE Symposium.   IEEE Computer Society, 1991, pp. 4–5.
  4. M. M. Rahman, J. Cook, and A. Taebi, “Non-contact heart vibration measurement using computer vision-based seismocardiography,” Scientific Reports, vol. 13, no. 1, p. 11787, 2023.
  5. A. Taebi, B. E. Solar, A. J. Bomar et al., “Recent advances in seismocardiography,” Vibration, vol. 2, no. 1, pp. 64–86, 2019.
  6. A. Mann, P. Thibbotuwawa Gamage, B. Kakavand, and A. Taebi, “Exploring the impact of sensor location on seismocardiography-derived cardiac time intervals,” Journal of Engineering and Science in Medical Diagnostics and Therapy, 2024.
  7. A. Taebi and H. A. Mansy, “Analysis of seismocardiographic signals using polynomial chirplet transform and smoothed pseudo wigner-ville distribution,” in 2017 IEEE Signal Processing in Medicine and Biology Symposium (SPMB).   IEEE, 2017, pp. 1–6.
  8. O. T. Inan, P.-F. Migeotte, K.-S. Park et al., “Ballistocardiography and seismocardiography: A review of recent advances,” IEEE journal of biomedical and health informatics, vol. 19, no. 4, pp. 1414–1427, 2014.
  9. J. Cook, M. Umar, F. Khalili, and A. Taebi, “Body acoustics for the non-invasive diagnosis of medical conditions,” Bioengineering, vol. 9, no. 4, p. 149, 2022.
  10. K. Sørensen, S. E. Schmidt, A. S. Jensen et al., “Definition of fiducial points in the normal seismocardiogram,” Scientific reports, vol. 8, no. 1, pp. 1–11, 2018.
  11. U. Ha, S. Assana, and F. Adib, “Contactless seismocardiography via deep learning radars,” in Proceedings of the 26th Annual International Conference on Mobile Computing and Networking, 2020, pp. 1–14.
  12. K. Tavakolian, A. P. Blaber, A. Akhbardeh et al., “Estimating cardiac stroke volume from the seismocardiogram signal,” CMBES Proceedings, vol. 33, 2010.
  13. M. Pänkäälä, T. Koivisto, O. Lahdenoja et al., “Detection of atrial fibrillation with seismocardiography,” in 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).   IEEE, 2016, pp. 4369–4374.
  14. M. M. H. Shandhi, J. Fan, J. A. Heller et al., “Estimation of changes in intracardiac hemodynamics using wearable seismocardiography and machine learning in patients with heart failure: a feasibility study,” IEEE Transactions on Biomedical Engineering, vol. 69, no. 8, pp. 2443–2455, 2022.
  15. D. M. Salerno and J. Zanetti, “Seismocardiography for monitoring changes in left ventricular function during ischemia,” Chest, vol. 100, no. 4, pp. 991–993, 1991.
  16. H. Sedghamiz, “Matlab implementation of pan tompkins ecg qrs detector,” Code Available at the File Exchange Site of MathWorks, 2014.
Citations (3)

Summary

We haven't generated a summary for this paper yet.