Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Combining multitemporal optical and SAR data for LAI imputation with BiLSTM network (2307.07434v1)

Published 14 Jul 2023 in cs.CV and eess.IV

Abstract: The Leaf Area Index (LAI) is vital for predicting winter wheat yield. Acquisition of crop conditions via Sentinel-2 remote sensing images can be hindered by persistent clouds, affecting yield predictions. Synthetic Aperture Radar (SAR) provides all-weather imagery, and the ratio between its cross- and co-polarized channels (C-band) shows a high correlation with time series LAI over winter wheat regions. This study evaluates the use of time series Sentinel-1 VH/VV for LAI imputation, aiming to increase spatial-temporal density. We utilize a bidirectional LSTM (BiLSTM) network to impute time series LAI and use half mean squared error for each time step as the loss function. We trained models on data from southern Germany and the North China Plain using only LAI data generated by Sentinel-1 VH/VV and Sentinel-2. Experimental results show BiLSTM outperforms traditional regression methods, capturing nonlinear dynamics between multiple time series. It proves robust in various growing conditions and is effective even with limited Sentinel-2 images. BiLSTM's performance surpasses that of LSTM, particularly over the senescence period. Therefore, BiLSTM can be used to impute LAI with time-series Sentinel-1 VH/VV and Sentinel-2 data, and this method could be applied to other time-series imputation issues.

Citations (2)

Summary

We haven't generated a summary for this paper yet.