Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
124 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

StegoHound: A Novel Multi-Approaches Method for Efficient and Effective Identification and Extraction of Digital Evidence Masked by Steganographic Techniques in WAV and MP3 Files (2307.07293v2)

Published 14 Jul 2023 in cs.CR and cs.MM

Abstract: Anti-forensics techniques particularly steganography and cryptography have become increasingly pressing issues that affect the current digital forensics practice. This paper advances the automation of hidden evidence extraction in the context of audio files by proposing a novel multi-approaches method which enables the correlation between unprocessed artefacts, indexed and live forensics analysis and traditional Steganographic and Cryptographic detection techniques. In this work, we opted for experimental research methodology in the form of a quantitative analysis of the efficiency of the proposed automation detecting and extracting hidden artefacts in WAV and MP3 audio files by comparing it to standard industry systems. This work advances the current automation in extracting evidence hidden by Cryptographic and Steganographic techniques during forensics investigations, the proposed multi-approaches demonstrated a clear enhancement in terms of coverage and accuracy notably on large audio files (MP3 and WAV) for which the manual forensics analysis is complex, time-consuming and requires significant expertise. Nonetheless, the proposed multi-approach automation may occasionally produce false positives (detecting steganography where none exists) or false negatives (failing to detect steganography that is present) but overall achieve a good balance between efficiently and effectively detecting hidden evidence and minimising the false negative which validates its reliability.

Citations (1)

Summary

We haven't generated a summary for this paper yet.