Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MaxSR: Image Super-Resolution Using Improved MaxViT (2307.07240v1)

Published 14 Jul 2023 in cs.CV

Abstract: While transformer models have been demonstrated to be effective for natural language processing tasks and high-level vision tasks, only a few attempts have been made to use powerful transformer models for single image super-resolution. Because transformer models have powerful representation capacity and the in-built self-attention mechanisms in transformer models help to leverage self-similarity prior in input low-resolution image to improve performance for single image super-resolution, we present a single image super-resolution model based on recent hybrid vision transformer of MaxViT, named as MaxSR. MaxSR consists of four parts, a shallow feature extraction block, multiple cascaded adaptive MaxViT blocks to extract deep hierarchical features and model global self-similarity from low-level features efficiently, a hierarchical feature fusion block, and finally a reconstruction block. The key component of MaxSR, i.e., adaptive MaxViT block, is based on MaxViT block which mixes MBConv with squeeze-and-excitation, block attention and grid attention. In order to achieve better global modelling of self-similarity in input low-resolution image, we improve block attention and grid attention in MaxViT block to adaptive block attention and adaptive grid attention which do self-attention inside each window across all grids and each grid across all windows respectively in the most efficient way. We instantiate proposed model for classical single image super-resolution (MaxSR) and lightweight single image super-resolution (MaxSR-light). Experiments show that our MaxSR and MaxSR-light establish new state-of-the-art performance efficiently.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Bincheng Yang (1 paper)
  2. Gangshan Wu (70 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.