Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reproducing the Acoustic Velocity Vectors in a Spherical Listening Region (2307.07200v5)

Published 14 Jul 2023 in eess.AS

Abstract: Acoustic velocity vectors (AVVs) are related to the human's perception of sound at low frequencies and are widely used in Ambisonics. This paper proposes a spatial sound field reproduction algorithm called velocity matching, which reproduces the AVVs in the spherical listening region by matching the AVVs' spherical harmonic coefficients. Using the sound field translation formula, the spherical harmonic coefficients of the AVVs are derived from the spherical harmonic coefficients of the pressure, which can be measured by a higher-order microphone array. Unlike algorithms that only control the AVVs at discrete sweet spots, the proposed velocity matching algorithm manipulates the AVVs in the whole spherical listening region and allows the listener to move beyond the sweet spots. Simulations show the proposed velocity matching algorithm accurately reproduces the AVVs in the spherical listening region and requires fewer number of loudspeakers than pressure matching algorithm.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. O. Kirkeby and P. A. Nelson, “Reproduction of plane wave sound fields,” The Journal of the Acoustical Society of America, vol. 94, no. 5, pp. 2992–3000, 11 1993.
  2. A. J. Berkhout, D. de Vries, and P. Vogel, “Acoustic control by wave field synthesis,” The Journal of the Acoustical Society of America, vol. 93, no. 5, pp. 2764–2778, 05 1993.
  3. M. M. Boone, E. N. G. Verheijen, and P. F. van Tol, “Spatial sound-field reproduction by wave-field synthesis,” Journal of the Audio Engineering Society, vol. 43, no. 12, pp. 1003–1012, December 1995.
  4. J. Ahrens, R. Rabenstein, and S. Spors, “The theory of wave field synthesis revisited,” Journal of the Audio Engineering Society, May 2008.
  5. P.-A. Gauthier and A. Berry, “Adaptive wave field synthesis for active sound field reproduction: Experimental results,” The Journal of the Acoustical Society of America, vol. 123, no. 4, pp. 1991–2002, 04 2008.
  6. F. Winter, F. Schultz, G. Firtha, and S. Spors, “A geometric model for prediction of spatial aliasing in 2.5 D sound field synthesis,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 27, no. 6, pp. 1031–1046, 2019.
  7. D. Ward and T. Abhayapala, “Reproduction of a plane-wave sound field using an array of loudspeakers,” IEEE Transactions on Speech and Audio Processing, vol. 9, no. 6, pp. 697–707, 2001.
  8. T. Betlehem and T. D. Abhayapala, “Theory and design of sound field reproduction in reverberant rooms,” The Journal of the Acoustical Society of America, vol. 117, no. 4, pp. 2100–2111, 04 2005.
  9. M. A. Poletti, “Three-dimensional surround sound systems based on spherical harmonics,” Journal of the Audio Engineering Society, vol. 53, no. 11, pp. 1004–1025, November 2005.
  10. S. Spors, H. Wierstorf, A. Raake, F. Melchior, M. Frank, and F. Zotter, “Spatial sound with loudspeakers and its perception: A review of the current state,” Proceedings of the IEEE, vol. 101, no. 9, pp. 1920–1938, 2013.
  11. M. A. Gerzon and G. J. Barton, “Ambisonic decoders for HDTV,” in Audio Engineering Society Convention 92, Mar 1992.
  12. M. A. Gerzon, “General metatheory of auditory localisation,” in Audio Engineering Society Convention 92, Mar 1992.
  13. D. Arteaga, “An ambisonics decoder for irregular 3D loudspeaker arrays,” in The 134th AES Convention, 01 2013.
  14. X. Hu, J. Wang, W. Zhang, and L. Zhang, “Time-domain sound field reproduction with pressure and particle velocity jointly controlled,” Applied Sciences, vol. 11, no. 22, 2021.
  15. M. Shin, P. A. Nelson, F. M. Fazi, and J. Seo, “Velocity controlled sound field reproduction by non-uniformly spaced loudspeakers,” Journal of Sound and Vibration, vol. 370, pp. 444–464, 2016.
  16. M. Buerger, R. Maas, H. W. Löllmann, and W. Kellermann, “Multizone sound field synthesis based on the joint optimization of the sound pressure and particle velocity vector on closed contours,” in 2015 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), 2015, pp. 1–5.
  17. M. Buerger, C. Hofmann, and W. Kellermann, “Broadband multizone sound rendering by jointly optimizing the sound pressure and particle velocity,” The Journal of the Acoustical Society of America, vol. 143, no. 3, pp. 1477–1490, 03 2018.
  18. H. Zuo, T. D. Abhayapala, and P. N. Samarasinghe, “Particle velocity assisted three dimensional sound field reproduction using a modal-domain approach,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 28, pp. 2119–2133, 2020.
  19. J. Meyer and G. Elko, “A highly scalable spherical microphone array based on an orthonormal decomposition of the soundfield,” in 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 2, 2002, pp. II–1781–II–1784.
  20. T. D. Abhayapala and D. B. Ward, “Theory and design of high order sound field microphones using spherical microphone array,” in 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 2, 2002, pp. II–1949–II–1952.
  21. A. Herzog and E. A. P. Habets, “Generalized intensity vector and energy density in the spherical harmonic domain: Theory and applications,” The Journal of the Acoustical Society of America, vol. 150, no. 1, pp. 294–306, 07 2021.
  22. F. Ma, T. D. Abhayapala, and W. Zhang, “Multiple circular arrays of vector sensors for real-time sound field analysis,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 29, pp. 286–299, 2021.
  23. A. H. Moore, C. Evers, and P. A. Naylor, “Direction of arrival estimation in the spherical harmonic domain using subspace pseudointensity vectors,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 25, no. 1, pp. 178–192, 2017.
  24. L. Birnie, T. Abhayapala, V. Tourbabin, and P. Samarasinghe, “Mixed source sound field translation for virtual binaural application with perceptual validation,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 29, pp. 1188–1203, 2021.
  25. H. Zuo, P. N. Samarasinghe, and T. D. Abhayapala, “Intensity based spatial soundfield reproduction using an irregular loudspeaker array,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 28, pp. 1356–1369, 2020.
  26. ——, “Intensity based soundfield reproduction over multiple sweet spots using an irregular loudspeaker array,” in 2020 28th European Signal Processing Conference (EUSIPCO), 2021, pp. 486–490.
  27. H. Zuo, T. D. Abhayapala, and P. N. Samarasinghe, “3d multizone soundfield reproduction in a reverberant environment using intensity matching method,” in ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021, pp. 416–420.
  28. J.-W. Choi and Y.-H. Kim, “Manipulation of sound intensity within a selected region using multiple sources,” The Journal of the Acoustical Society of America, vol. 116, no. 2, pp. 843–852, 08 2004.
Citations (2)

Summary

We haven't generated a summary for this paper yet.