Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bi-Lipschitz arcs in metric spaces with controlled geometry (2307.06931v2)

Published 13 Jul 2023 in math.MG

Abstract: We generalize a bi-Lipschitz extension result of David and Semmes from Euclidean spaces to complete metric measure spaces with controlled geometry (Ahlfors regularity and supporting a Poincar\'e inequality). In particular, we find sharp conditions on metric measure spaces $X$ so that any bi-Lipschitz embedding of a subset of the real line into $X$ extends to a bi-Lipschitz embedding of the whole line. Along the way, we prove that if the complement of an open subset $Y$ of $X$ has small Assouad dimension, then it is a uniform domain. Finally, we prove a quantitative approximation of continua in $X$ by bi-Lipschitz curves.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. Doubling conformal densities. J. Reine Angew. Math., 541:117–141, 2001.
  2. Poincaré inequalities and quasiconformal structure on the boundary of some hyperbolic buildings. Proc. Amer. Math. Soc., 127(8):2315–2324, 1999.
  3. Geometry of measures in real dimensions via Hölder parameterizations. J. Geom. Anal., 29(2):1153–1192, 2019.
  4. Isaac Chavel. Isoperimetric inequalities, volume 145 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2001. Differential geometric and analytic perspectives.
  5. J. Cheeger. Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal., 9(3):428–517, 1999.
  6. G. David and S. Semmes. Singular integrals and rectifiable sets in 𝐑nsuperscript𝐑𝑛{\bf R}^{n}bold_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT: Beyond Lipschitz graphs. Astérisque, page 152, 1991.
  7. Fractured fractals and broken dreams, volume 7 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press, Oxford University Press, New York, 1997. Self-similar geometry through metric and measure.
  8. Isoperimetric and Poincaré inequalities on non-self-similar Sierpiński sponges: the borderline case. Anal. Geom. Metr. Spaces, 10(1):373–393, 2022.
  9. David A. Herron. The geometry of uniform, quasicircle, and circle domains. Ann. Acad. Sci. Fenn. Ser. A I Math., 12(2):217–227, 1987.
  10. David A. Herron. Constructing uniform spaces. Ann. Fenn. Math., 47(2):1053–1064, 2022.
  11. Euclidean quasiconvexity. Ann. Acad. Sci. Fenn. Math., 33(1):205–230, 2008.
  12. Quasiconformal maps in metric spaces with controlled geometry. Acta Math., 181(1):1–61, 1998.
  13. Sobolev spaces on metric measure spaces, volume 27 of New Mathematical Monographs. Cambridge University Press, Cambridge, 2015. An approach based on upper gradients.
  14. Quasiconvexity in the Heisenberg group. Geom. Dedicata, 192:157–170, 2018.
  15. On removability properties of ψ𝜓\psiitalic_ψ-uniform domains in Banach spaces. Complex Anal. Oper. Theory, 11(1):35–55, 2017.
  16. David Jerison. The Poincaré inequality for vector fields satisfying Hörmander’s condition. Duke Math. J., 53(2):503–523, 1986.
  17. Peter W. Jones. Rectifiable sets and the traveling salesman problem. Invent. Math., 102(1):1–15, 1990.
  18. Modulus and continuous capacity. Ann. Acad. Sci. Fenn. Math., 26(2):455–464, 2001.
  19. The Poincaré inequality is an open ended condition. Ann. of Math. (2), 167(2):575–599, 2008.
  20. T. J. Laakso. Ahlfors Q𝑄Qitalic_Q-regular spaces with arbitrary Q>1𝑄1Q>1italic_Q > 1 admitting weak Poincaré inequality. Geom. Funct. Anal., 10(1):111–123, 2000.
  21. Minimal bi-Lipschitz embedding dimension of ultrametric spaces. Fund. Math., 144(2):181–193, 1994.
  22. Canonical parameterizations of metric disks. Duke Math. J., 169(4):761–797, 2020.
  23. Paul MacManus. Bi-Lipschitz extensions in the plane. J. Anal. Math., 66:85–115, 1995.
  24. Paul MacManus. Catching sets with quasicircles. Rev. Mat. Iberoamericana, 15(2):267–277, 1999.
  25. Modulus and Poincaré inequalities on non-self-similar Sierpiński carpets. Geom. Funct. Anal., 23(3):985–1034, 2013.
  26. Quasiconformal almost parametrizations of metric surfaces, 2021.
  27. Kate Okikiolu. Characterization of subsets of rectifiable curves in 𝐑nsuperscript𝐑𝑛{\bf R}^{n}bold_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. J. London Math. Soc. (2), 46(2):336–348, 1992.
  28. A Cmsuperscript𝐶𝑚C^{m}italic_C start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT Whitney extension theorem for horizontal curves in the Heisenberg group. Trans. Amer. Math. Soc., 371(12):8971–8992, 2019.
  29. S. Semmes. Finding curves on general spaces through quantitative topology, with applications to Sobolev and Poincaré inequalities. Selecta Math. (N.S.), 2(2):155–295, 1996.
  30. Elias M. Stein. Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, N.J., 1970.
  31. A Cm,ωsuperscript𝐶𝑚𝜔C^{m,\omega}italic_C start_POSTSUPERSCRIPT italic_m , italic_ω end_POSTSUPERSCRIPT Whitney Extension Theorem for Horizontal Curves in the Heisenberg Group. J. Geom. Anal., 2023.
  32. R.E. Tarjan and U. Vishkin. Finding biconnected componemts and computing tree functions in logarithmic parallel time. In 25th Annual Symposium onFoundations of Computer Science, 1984., pages 12–20, 1984.
  33. Jussi Väisälä. Uniform domains. Tohoku Math. J. (2), 40(1):101–118, 1988.
  34. Nicholas Th. Varopoulos. Analyse sur les groupes unimodulaires. C. R. Acad. Sci. Paris Sér. I Math., 303(4):93–95, 1986.
  35. Hassler Whitney. Analytic extensions of differentiable functions defined in closed sets. Trans. Amer. Math. Soc., 36(1):63–89, 1934.
  36. Scott Zimmerman. The Whitney extension theorem for C1superscript𝐶1C^{1}italic_C start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT, horizontal curves in the Heisenberg group. J. Geom. Anal., 28(1):61–83, 2018.
  37. Scott Zimmerman. Whitney’s Extension Theorem and the finiteness principle for curves in the Heisenberg group. Rev. Mat. Iberoam., 2022.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com