2000 character limit reached
Bi-Lipschitz arcs in metric spaces with controlled geometry (2307.06931v2)
Published 13 Jul 2023 in math.MG
Abstract: We generalize a bi-Lipschitz extension result of David and Semmes from Euclidean spaces to complete metric measure spaces with controlled geometry (Ahlfors regularity and supporting a Poincar\'e inequality). In particular, we find sharp conditions on metric measure spaces $X$ so that any bi-Lipschitz embedding of a subset of the real line into $X$ extends to a bi-Lipschitz embedding of the whole line. Along the way, we prove that if the complement of an open subset $Y$ of $X$ has small Assouad dimension, then it is a uniform domain. Finally, we prove a quantitative approximation of continua in $X$ by bi-Lipschitz curves.
- Doubling conformal densities. J. Reine Angew. Math., 541:117–141, 2001.
- Poincaré inequalities and quasiconformal structure on the boundary of some hyperbolic buildings. Proc. Amer. Math. Soc., 127(8):2315–2324, 1999.
- Geometry of measures in real dimensions via Hölder parameterizations. J. Geom. Anal., 29(2):1153–1192, 2019.
- Isaac Chavel. Isoperimetric inequalities, volume 145 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2001. Differential geometric and analytic perspectives.
- J. Cheeger. Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal., 9(3):428–517, 1999.
- G. David and S. Semmes. Singular integrals and rectifiable sets in 𝐑nsuperscript𝐑𝑛{\bf R}^{n}bold_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT: Beyond Lipschitz graphs. Astérisque, page 152, 1991.
- Fractured fractals and broken dreams, volume 7 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press, Oxford University Press, New York, 1997. Self-similar geometry through metric and measure.
- Isoperimetric and Poincaré inequalities on non-self-similar Sierpiński sponges: the borderline case. Anal. Geom. Metr. Spaces, 10(1):373–393, 2022.
- David A. Herron. The geometry of uniform, quasicircle, and circle domains. Ann. Acad. Sci. Fenn. Ser. A I Math., 12(2):217–227, 1987.
- David A. Herron. Constructing uniform spaces. Ann. Fenn. Math., 47(2):1053–1064, 2022.
- Euclidean quasiconvexity. Ann. Acad. Sci. Fenn. Math., 33(1):205–230, 2008.
- Quasiconformal maps in metric spaces with controlled geometry. Acta Math., 181(1):1–61, 1998.
- Sobolev spaces on metric measure spaces, volume 27 of New Mathematical Monographs. Cambridge University Press, Cambridge, 2015. An approach based on upper gradients.
- Quasiconvexity in the Heisenberg group. Geom. Dedicata, 192:157–170, 2018.
- On removability properties of ψ𝜓\psiitalic_ψ-uniform domains in Banach spaces. Complex Anal. Oper. Theory, 11(1):35–55, 2017.
- David Jerison. The Poincaré inequality for vector fields satisfying Hörmander’s condition. Duke Math. J., 53(2):503–523, 1986.
- Peter W. Jones. Rectifiable sets and the traveling salesman problem. Invent. Math., 102(1):1–15, 1990.
- Modulus and continuous capacity. Ann. Acad. Sci. Fenn. Math., 26(2):455–464, 2001.
- The Poincaré inequality is an open ended condition. Ann. of Math. (2), 167(2):575–599, 2008.
- T. J. Laakso. Ahlfors Q𝑄Qitalic_Q-regular spaces with arbitrary Q>1𝑄1Q>1italic_Q > 1 admitting weak Poincaré inequality. Geom. Funct. Anal., 10(1):111–123, 2000.
- Minimal bi-Lipschitz embedding dimension of ultrametric spaces. Fund. Math., 144(2):181–193, 1994.
- Canonical parameterizations of metric disks. Duke Math. J., 169(4):761–797, 2020.
- Paul MacManus. Bi-Lipschitz extensions in the plane. J. Anal. Math., 66:85–115, 1995.
- Paul MacManus. Catching sets with quasicircles. Rev. Mat. Iberoamericana, 15(2):267–277, 1999.
- Modulus and Poincaré inequalities on non-self-similar Sierpiński carpets. Geom. Funct. Anal., 23(3):985–1034, 2013.
- Quasiconformal almost parametrizations of metric surfaces, 2021.
- Kate Okikiolu. Characterization of subsets of rectifiable curves in 𝐑nsuperscript𝐑𝑛{\bf R}^{n}bold_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. J. London Math. Soc. (2), 46(2):336–348, 1992.
- A Cmsuperscript𝐶𝑚C^{m}italic_C start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT Whitney extension theorem for horizontal curves in the Heisenberg group. Trans. Amer. Math. Soc., 371(12):8971–8992, 2019.
- S. Semmes. Finding curves on general spaces through quantitative topology, with applications to Sobolev and Poincaré inequalities. Selecta Math. (N.S.), 2(2):155–295, 1996.
- Elias M. Stein. Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, N.J., 1970.
- A Cm,ωsuperscript𝐶𝑚𝜔C^{m,\omega}italic_C start_POSTSUPERSCRIPT italic_m , italic_ω end_POSTSUPERSCRIPT Whitney Extension Theorem for Horizontal Curves in the Heisenberg Group. J. Geom. Anal., 2023.
- R.E. Tarjan and U. Vishkin. Finding biconnected componemts and computing tree functions in logarithmic parallel time. In 25th Annual Symposium onFoundations of Computer Science, 1984., pages 12–20, 1984.
- Jussi Väisälä. Uniform domains. Tohoku Math. J. (2), 40(1):101–118, 1988.
- Nicholas Th. Varopoulos. Analyse sur les groupes unimodulaires. C. R. Acad. Sci. Paris Sér. I Math., 303(4):93–95, 1986.
- Hassler Whitney. Analytic extensions of differentiable functions defined in closed sets. Trans. Amer. Math. Soc., 36(1):63–89, 1934.
- Scott Zimmerman. The Whitney extension theorem for C1superscript𝐶1C^{1}italic_C start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT, horizontal curves in the Heisenberg group. J. Geom. Anal., 28(1):61–83, 2018.
- Scott Zimmerman. Whitney’s Extension Theorem and the finiteness principle for curves in the Heisenberg group. Rev. Mat. Iberoam., 2022.