Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stackelberg Vertex Cover on a Path (2307.06772v2)

Published 13 Jul 2023 in cs.GT, cs.DM, and math.CO

Abstract: A Stackelberg Vertex Cover game is played on an undirected graph $\mathcal{G}$ where some of the vertices are under the control of a \emph{leader}. The remaining vertices are assigned a fixed weight. The game is played in two stages. First, the leader chooses prices for the vertices under her control. Afterward, the second player, called \emph{follower}, selects a min weight vertex cover in the resulting weighted graph. That is, the follower selects a subset of vertices $C*$ such that every edge has at least one endpoint in $C*$ of minimum weight w.r.t.\ to the fixed weights, and the prices set by the leader. Stackelberg Vertex Cover (StackVC) describes the leader's optimization problem to select prices in the first stage of the game so as to maximize her revenue, which is the cumulative price of all her (priceable) vertices that are contained in the follower's solution. Previous research showed that StackVC is \textsf{NP}-hard on bipartite graphs, but solvable in polynomial time in the special case of bipartite graphs, where all priceable vertices belong to the same side of the bipartition. In this paper, we investigate StackVC on paths and present a dynamic program with linear time and space complexity.

Summary

We haven't generated a summary for this paper yet.