Stochastic thermodynamics of a quantum dot coupled to a finite-size reservoir (2307.06679v3)
Abstract: In nano-scale systems coupled to finite-size reservoirs, the reservoir temperature may fluctuate due to heat exchange between the system and the reservoirs. To date, a stochastic thermodynamic analysis of heat, work and entropy production in such systems is however missing. Here we fill this gap by analyzing a single-level quantum dot tunnel coupled to a finite-size electronic reservoir. The system dynamics is described by a Markovian master equation, depending on the fluctuating temperature of the reservoir. Based on a fluctuation theorem, we identify the appropriate entropy production that results in a thermodynamically consistent statistical description. We illustrate our results by analyzing the work production for a finite-size reservoir Szilard engine.
- R. J. Harris and G. M. Schütz, Fluctuation theorems for stochastic dynamics, J. Stat. Mech: Theory Exp. 2007, P07020 (2007).
- C. Jarzynski, Equalities and inequalities: Irreversibility and the second law of thermodynamics at the nanoscale, Annu. Rev. Condens. Matter Phys. 2, 329 (2011).
- U. Seifert, Stochastic thermodynamics, fluctuation theorems and molecular machines, Rep. Prog. Phys. 75, 126001 (2012).
- G. N. Bochkov and Y. E. Kuzovlev, Fluctuation-dissipation relations. achievements and misunderstandings, Phys. Usp. 56, 590 (2013).
- C. van den Broeck and M. Esposito, Ensemble and trajectory thermodynamics: A brief introduction, Phys. A: Stat. Mech. 418, 6 (2015).
- M. M. Mansour and F. Baras, Fluctuation theorem: A critical review, Chaos 27, 104609 (2017).
- U. Seifert, From stochastic thermodynamics to thermodynamic inference, Annu. Rev. Condens. Matter Phys. 10, 171 (2019).
- U. Seifert, Entropy production along a stochastic trajectory and an integral fluctuation theorem, Phys. Rev. Lett. 95, 040602 (2005).
- G. N. Bochkov and Y. E. Kuzovlev, Nonlinear fluctuation-dissipation relations and stochastic models in nonequilibrium thermodynamics: I. generalized fluctuation-dissipation theorem, Physica A 106, 443 (1981a).
- G. N. Bochkov and Y. E. Kuzovlev, Nonlinear fluctuation-dissipation relations and stochastic models in nonequilibrium thermodynamics: II. kinetic potential and variational principles for nonlinear irreversible processes, Physica A 106, 480 (1981b).
- G. E. Crooks, Nonequilibrium measurements of free energy differences for microscopically reversible Markovian systems, J. Stat. Phys. 90, 1481 (1998).
- G. Crooks, Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences, Phys. Rev. E 60, 2721 (1999).
- G. E. Crooks, Path-ensemble averages in systems driven far from equilibrium, Phys. Rev. E 61, 2361 (2000).
- C. Jarzynski, Hamiltonian derivation of a detailed fluctuation theorem, J. Stat. Phys. 98, 77 (2000).
- U. Seifert, Fluctuation theorem for birth–death or chemical master equations with time-dependent rates, J. Phys. A: Math. Gen. 37, L517 (2004).
- C. Jarzynski, Nonequilibrium equality for free energy differences, Phys. Rev. Lett. 78, 2690 (1997a).
- C. Jarzynski, Equilibrium free-energy differences from nonequilibrium measurements: A master-equation approach, Phys. Rev. E 56, 5018 (1997b).
- A. E. Rastegin, Non-equilibrium equalities with unital quantum channels, J. Stat. Mech. 2013, P06016 (2013).
- G. Hummer and A. Szabo, Free energy reconstruction from nonequilibrium single-molecule pulling experiments, Proc. Natl. Acad. Sci. USA 98, 3658 (2001).
- G. Hummer and A. Szabo, Free energy profiles from single-molecule pulling experiments, Proc. Natl. Acad. Sci. USA 107, 21441 (2010).
- Y. Watanabe, R. B. Capaz, and R. A. Simao, Surface characterization using friction force microscopy and the Jarzynski equality, Appl. Surf. Sci. 607, 155070 (2023).
- J. P. Pekola and B. Karimi, Colloquium: Quantum heat transport in condensed matter systems, Rev. Mod. Phys. 93, 041001 (2021).
- G. Schaller, C. Nietner, and T. Brandes, Relaxation dynamics of meso-reservoirs, New J. Phys. 16, 125011 (2014).
- C. Grenier, C. Kollath, and A. Georges, Thermoelectric transport and peltier cooling of cold atomic gases, C. R. Phys. 17, 1161 (2016).
- Y.-H. Ma, Optimizing thermodynamic cycles with two finite-sized reservoirs, Entropy 22, 1002 (2020).
- H. Yuan, Y.-H. Ma, and C. P. Sun, Optimizing thermodynamic cycles with two finite-sized reservoirs, Phys. Rev. E 105, L022101 (2022).
- A. Riera-Campeny, A. Sanpera, and P. Strasberg, Quantum systems correlated with a finite bath: Nonequilibrium dynamics and thermodynamics, PRX Quantum 2, 010340 (2021).
- P. Strasberg and A. Winter, First and second law of quantum thermodynamics: A consistent derivation based on a microscopic definition of entropy, PRX Quantum 2, 030202 (2021).
- P. Strasberg, M. G. Díaz, and A. Riera-Campeny, Clausius inequality for finite baths reveals universal efficiency improvements, Phys. Rev. E 104, L022103 (2021).
- C. Elouard and C. Lombard Latune, Extending the laws of thermodynamics for arbitrary autonomous quantum systems, PRX Quantum 4, 020309 (2023).
- T. L. van den Berg, F. Brange, and P. Samuelsson, Energy and temperature fluctuations in the single electron box, New J. Phys. 17, 075012 (2015).
- S. Kullback and R. A. Leibler, On information and sufficiency, Ann. Math. Stat. 22, 79 (1951).
- R. Clausius, Über verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie, Ann. Phys. 201, 353 (1865).
- M. Esposito, K. Lindenberg, and C. Van den Broeck, Entropy production as correlation between system and reservoir, New J. Phys. 12, 013013 (2010).
- D. Reeb and M. M. Wolf, An improved Landauer principle with finite-size corrections, New J. Phys. 16, 103011 (2014).
- G. Manzano, Squeezed thermal reservoir as a generalized equilibrium reservoir, Phys. Rev. E 98, 042123 (2018).
- M. Esposito and P. Gaspard, Quantum master equation for a system influencing its environment, Phys. Rev. E 68, 066112 (2003).
- H.-P. Breuer, J. Gemmer, and M. Michel, Non-Markovian quantum dynamics: Correlated projection superoperators and hilbert space averaging, Phys. Rev. E 73, 016139 (2006).
- M. Esposito and P. Gaspard, Quantum master equation for the microcanonical ensemble, Phys. Rev. E 76, 041134 (2007).
- H.-P. Breuer, Non-Markovian generalization of the lindblad theory of open quantum systems, Phys. Rev. A 75, 022103 (2007).
- A. Riera-Campeny, A. Sanpera, and P. Strasberg, Open quantum systems coupled to finite baths: A hierarchy of master equations, Phys. Rev. E 105, 054119 (2022).