Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Nonalcoholic Fatty Liver Disease Classification Performance With Latent Diffusion Models (2307.06507v2)

Published 13 Jul 2023 in cs.CV and cs.AI

Abstract: Integrating deep learning with clinical expertise holds great potential for addressing healthcare challenges and empowering medical professionals with improved diagnostic tools. However, the need for annotated medical images is often an obstacle to leveraging the full power of machine learning models. Our research demonstrates that by combining synthetic images, generated using diffusion models, with real images, we can enhance nonalcoholic fatty liver disease (NAFLD) classification performance even in low-data regime settings. We evaluate the quality of the synthetic images by comparing two metrics: Inception Score (IS) and Fr\'{e}chet Inception Distance (FID), computed on diffusion- and generative adversarial network (GAN)-generated images. Our results show superior performance for the diffusion-generated images, with a maximum IS score of $1.90$ compared to $1.67$ for GANs, and a minimum FID score of $69.45$ compared to $100.05$ for GANs. Utilizing a partially frozen CNN backbone (EfficientNet v1), our synthetic augmentation method achieves a maximum image-level ROC AUC of $0.904$ on a NAFLD prediction task.

Citations (4)

Summary

We haven't generated a summary for this paper yet.