Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Study on Autonomous Gravity-assists with a Path-following Control (2307.06185v1)

Published 11 Jul 2023 in astro-ph.EP, cs.SY, and eess.SY

Abstract: We investigate the autonomous control of gravity-assist hyperbolic trajectories using a path following control law based on sliding mode control theory. This control strategy ensures robustness to bounded disturbances. Monte Carlo simulations in the environments of Titan and Enceladus, considering significant insertion errors on the order of 50 km, demonstrate the effectiveness of the proposed approach. The Enceladus example showcases the applicability of the control strategy for close flybys of asteroids and small moons during scientific observations. It successfully stabilizes the orbital geometry within a short time span, avoiding collisions and enabling a close approach to Enceladus' surface with a separation distance of 10 km. Furthermore, we explore its application in a Jovian tour, considering a more complex N-body problem. Results indicate that the control system, while unable to guarantee a complete tour, plays a crucial role in ensuring precise trajectory control during flybys. In such cases, the vehicle guidance system requires higher precision than what can be achieved with a patched conics model. These findings demonstrate the effectiveness of the proposed control strategy for gravity-assist maneuvers and highlight its potential for various space exploration missions involving close encounters with celestial bodies.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. M. B. Quadrelli, L. J. Wood, J. E. Riedel, M. C. McHenry, M. Aung, L. A. Cangahuala, R. A. Volpe, P. M. Beauchamp, and J. A. Cutts, “Guidance, navigation, and control technology assessment for future planetary science missions,” Journal of Guidance, Control, and Dynamics, Vol. 38, No. 7, 2015, pp. 1165–1186.
  2. R. B. Negri and A. F. B. d. A. Prado, “A Novel Robust 3-D Path Following Control for Keplerian Orbits,” arXiv preprint arXiv:2012.01954, 2020.
  3. R. B. Negri and A. F. Prado, “Autonomous and Robust Orbit Keeping for Small Body Missions,” Under Review in Journal of Guidance, Control, and Dynamics, 2021.
  4. R. D. Lorenz and T. A. Burk, “Enceladus plume density from Cassini spacecraft attitude control data,” Icarus, Vol. 300, 2018, pp. 200–202.
  5. R. D. Lorenz, “Io volcanic plumes: spacecraft flythrough hazard evaluation,” Journal of Spacecraft and Rockets, Vol. 52, No. 3, 2015, pp. 990–993.
  6. F. Pelletier, P. Antreasian, J. Bordi, K. Criddle, R. Ionasescu, R. Jacobson, R. Mackenzie, D. Parcher, and J. Stauch, “Atmospheric drag model for Cassini orbit determination during low altitude Titan flybys,” 16th AAS/AIAA Space Flight Mechanics Conference, 2006.
  7. F. A. Tsander and L. Korneev, Problems of Flight by Jet Propulsion: Interplanetary Flights: Collection of Articles. Israel Program for Scientific Translations, 1964.
  8. G. A. Crocco, One-year Exploration-trip Earth-mars-venus-earth. Verlag nicht ermittelbar, 1956.
  9. R. B. Negri and A. F. B. d. Almeida Prado, “A historical review of the theory of gravity-assists in the pre-spaceflight era,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 42, No. 8, 2020, pp. 1–10.
  10. S. Campagnola, B. B. Buffington, T. Lam, A. E. Petropoulos, and E. Pellegrini, “Tour Design Techniques for the Europa Clipper Mission,” Journal of Guidance, Control, and Dynamics, Vol. 42, No. 12, 2019, pp. 2615–2626.
  11. D. Izzo, “Revisiting Lambert’s problem,” Celestial Mechanics and Dynamical Astronomy, Vol. 121, No. 1, 2015, pp. 1–15.
  12. D. Izzo, “Global optimization and space pruning for spacecraft trajectory design,” Spacecraft Trajectory Optimization, Vol. 1, 2010, pp. 178–200.
  13. R. P. Russell, “Survey of spacecraft trajectory design in strongly perturbed environments,” Journal of Guidance, Control, and Dynamics, Vol. 35, No. 3, 2012, pp. 705–720.
  14. R. B. Negri, A. F. B. d. Almeida Prado, and A. Sukhanov, “Studying the errors in the estimation of the variation of energy by the “patched-conics” model in the three-dimensional swing-by,” Celestial Mechanics and Dynamical Astronomy, Vol. 129, No. 3, 2017, pp. 269–284.
  15. R. B. Negri, A. Sukhanov, and A. F. B. d. Almeida Prado, “Lunar gravity assists using patched-conics approximation, three and four body problems,” Advances in Space Research, Vol. 64, No. 1, 2019, pp. 42–63.
  16. R. B. Negri and A. F. Prado, “A Study of the Errors in Swing-by Design by the “Patched-Conics” Approach Applied to the Galilean Moons,” Proceedings of the 24th ABCM International Congress of Mechanical Engineering, 2017, 10.26678/ABCM.COBEM2017.COB17-1369.
  17. R. B. Negri and A. F. Prado, “Generalizing the Bicircular Restricted Four-Body Problem,” Journal of Guidance, Control, and Dynamics, Vol. 43, No. 6, 2020, pp. 1173–1179.
  18. Prentice hall Englewood Cliffs, NJ, 1991.
  19. CRC Press, 1975.
  20. J. Bellerose, D. Roth, D. Boone, Z. Tarzi, R. Ionasescu, and K. Criddle, “Cassini Orbit Determination Operations Through The Final Titan Flybys and The Mission Grand Finale (February 2016 - September 2017),” 2018, 2014/48036.
  21. J. Waite, J. Bell, R. Lorenz, R. Achterberg, and F. Flasar, “A model of variability in Titan’s atmospheric structure,” Planetary and Space Science, Vol. 86, 2013, pp. 45–56.
Citations (1)

Summary

We haven't generated a summary for this paper yet.