Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exponential stability of damped Euler-Bernoulli beam controlled by boundary springs and dampers (2307.06170v2)

Published 12 Jul 2023 in math.AP, cs.NA, math.NA, and math.OC

Abstract: In this paper, the vibration model of an elastic beam, governed by the damped Euler-Bernoulli equation $\rho(x)u_{tt}+\mu(x)u_{t}$$+\left(r(x)u_{xx}\right){xx}=0$, subject to the clamped boundary conditions $u(0,t)=u_x(0,t)=0$ at $x=0$, and the boundary conditions $\left(-r(x)u{xx}\right){x=\ell}=k_r u_x(\ell,t)+k_a u{xt}(\ell,t)$, $\left(-\left(r(x)u_{xx}\right){x}\right ){x=\ell}$$=- k_d u(\ell,t)-k_v u_{t}(\ell,t)$ at $x=\ell$, is analyzed. The boundary conditions at $x=\ell$ correspond to linear combinations of damping moments caused by rotation and angular velocity and also, of forces caused by displacement and velocity, respectively. The system stability analysis based on well-known Lyapunov approach is developed. Under the natural assumptions guaranteeing the existence of a regular weak solution, uniform exponential decay estimate for the energy of the system is derived. The decay rate constant in this estimate depends only on the physical and geometric parameters of the beam, including the viscous external damping coefficient $\mu(x) \ge 0$, and the boundary springs $k_r,k_d \ge 0$ and dampers $k_a,k_v \ge 0$. Some numerical examples are given to illustrate the role of the damping coefficient and the boundary dampers.

Citations (1)

Summary

We haven't generated a summary for this paper yet.