Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cavity-mediated entanglement of parametrically driven spin qubits via sidebands (2307.06067v1)

Published 12 Jul 2023 in quant-ph and cond-mat.mes-hall

Abstract: We consider a pair of quantum dot-based spin qubits that interact via microwave photons in a superconducting cavity, and that are also parametrically driven by separate external electric fields. For this system, we formulate a model for spin qubit entanglement in the presence of mutually off-resonant qubit and cavity frequencies. We show that the sidebands generated via the driving fields enable highly tunable qubit-qubit entanglement using only ac control and without requiring the qubit and cavity frequencies to be tuned into simultaneous resonance. The model we derive can be mapped to a variety of qubit types, including detuning-driven one-electron spin qubits in double quantum dots and three-electron resonant exchange qubits in triple quantum dots. The high degree of nonlinearity inherent in spin qubits renders these systems particularly favorable for parametric drive-activated entanglement. We determine multiple common resonance conditions for the two driven qubits and the cavity and identify experimentally relevant parameter regimes that enable the implementation of entangling gates with suppressed sensitivity to cavity photon occupation and decay. The parametrically driven sideband resonance approach we describe provides a promising route toward scalability and modularity in spin-based quantum information processing through drive-enabled tunability that can also be implemented in micromagnet-free electron and hole systems for spin-photon coupling.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. D. P. DiVincenzo, The Physical Implementation of Quantum Computation, Fortschr. Phys. 48, 771 (2000).
  2. D. Loss and D. P. DiVincenzo, Quantum computation with quantum dots, Phys. Rev. A 57, 120 (1998).
  3. B. E. Kane, A silicon-based nuclear spin quantum computer, Nature 393, 133 (1998).
  4. L. Childress, A. S. Sørensen, and M. D. Lukin, Mesoscopic cavity quantum electrodynamics with quantum dots, Phys. Rev. A 69, 042302 (2004).
  5. M. A. Sillanpää, J. I. Park, and R. W. Simmonds, Coherent quantum state storage and transfer between two phase qubits via a resonant cavity, Nature 449, 438 (2007).
  6. M. Benito, J. R. Petta, and G. Burkard, Optimized cavity-mediated dispersive two-qubit gates between spin qubits, Phys. Rev. B 100, 081412 (2019a).
  7. A. Warren, E. Barnes, and S. E. Economou, Long-distance entangling gates between quantum dot spins mediated by a superconducting resonator, Phys. Rev. B 100, 161303 (2019).
  8. C. Rigetti, A. Blais, and M. Devoret, Protocol for Universal Gates in Optimally Biased Superconducting Qubits, Phys. Rev. Lett. 94, 240502 (2005).
  9. C. Rigetti and M. Devoret, Fully microwave-tunable universal gates in superconducting qubits with linear couplings and fixed transition frequencies, Phys. Rev. B 81, 134507 (2010).
  10. R. Ruskov and C. Tahan, Modulated longitudinal gates on encoded spin qubits via curvature couplings to a superconducting cavity, Phys. Rev. B 103, 035301 (2021).
  11. S. R. McMillan and G. Burkard, Resonant single-shot CNOT in remote double quantum dot spin qubits, arXiv:2207.13588  (2022).
  12. J. Mielke and G. Burkard, Dispersive cavity-mediated quantum gate between driven dot-donor nuclear spins, Phys. Rev. B 107, 155302 (2023).
  13. B. R. Mollow, Power Spectrum of Light Scattered by Two-Level Systems, Phys. Rev. 188, 1969 (1969).
  14. J. M. Taylor, V. Srinivasa, and J. Medford, Electrically Protected Resonant Exchange Qubits in Triple Quantum Dots, Phys. Rev. Lett. 111, 050502 (2013).
  15. V. Srinivasa, J. M. Taylor, and C. Tahan, Entangling distant resonant exchange qubits via circuit quantum electrodynamics, Phys. Rev. B 94, 205421 (2016).
  16. M. Russ and G. Burkard, Long distance coupling of resonant exchange qubits, Phys. Rev. B 92, 205412 (2015a).
  17. J. Levy, Universal Quantum Computation with Spin-1/2 Pairs and Heisenberg Exchange, Phys. Rev. Lett. 89, 147902 (2002).
  18. G. Burkard and A. Imamoglu, Ultra-long-distance interaction between spin qubits, Phys. Rev. B 74, 041307 (2006).
  19. J. M. Taylor and M. D. Lukin, Cavity quantum electrodynamics with semiconductor double-dot molecules on a chip, arXiv:cond-mat/0605144  (2006).
  20. M. Russ and G. Burkard, Asymmetric resonant exchange qubit under the influence of electrical noise, Phys. Rev. B 91, 235411 (2015b).
  21. Y.-P. Shim and C. Tahan, Charge-noise-insensitive gate operations for always-on, exchange-only qubits, Phys. Rev. B 93, 121410 (2016).
  22. M. Russ, F. Ginzel, and G. Burkard, Coupling of three-spin qubits to their electric environment, Phys. Rev. B 94, 165411 (2016).
  23. W. Magnus, On the exponential solution of differential equations for a linear operator, Commun. Pure Appl. Math. 7, 649 (1954).
  24. A. M. Childs and I. L. Chuang, Universal quantum computation with two-level trapped ions, Phys. Rev. A 63, 012306 (2000).
  25. N. Schuch and J. Siewert, Natural two-qubit gate for quantum computation using the XYXY\mathrm{XY}roman_XY interaction, Phys. Rev. A 67, 032301 (2003).
  26. M. McEwen, D. Bacon, and C. Gidney, Relaxing hardware requirements for surface code circuits using time-dynamics, arXiv:2302.02192  (2023).
  27. A. P. Babu, J. Tuorila, and T. Ala-Nissila, State leakage during fast decay and control of a superconducting transmon qubit, npj Quantum Inf. 7, 30 (2021).
  28. A. Sørensen and K. Mølmer, Quantum Computation with Ions in Thermal Motion, Phys. Rev. Lett. 82, 1971 (1999).
Citations (3)

Summary

We haven't generated a summary for this paper yet.