Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semantic Communications System with Model Division Multiple Access and Controllable Coding Rate for Point Cloud (2307.06027v1)

Published 12 Jul 2023 in cs.MM

Abstract: Point cloud, as a 3D representation, is widely used in autonomous driving, virtual reality (VR), and augmented reality (AR). However, traditional communication systems think that the point cloud's semantic information is irrelevant to communication, which hinders the efficient transmission of point clouds in the era of AI. This paper proposes a point cloud based semantic communication system (PCSC), which uses AI-based encoding techniques to extract the semantic information of the point cloud and joint source-channel coding (JSCC) technology to overcome the distortion caused by noise channels and solve the "cliff effect" in traditional communication. In addition, the system realizes the controllable coding rate without fine-tuning the network. The method analyzes the coded semantic vector's importance and discards semantically-unimportant information, thereby improving the transmission efficiency. Besides, PCSC and the recently proposed non-orthogonal model division multiple access (MDMA) technology are combined to design a point cloud MDMA transmission system (M-PCSC) for multi-user transmission. Relevant experimental results show that the proposed method outperforms the traditional method 10dB in the same channel bandwidth ratio under the PSNR D1 and PSNR D2 metrics. In terms of transmission, the proposed method can effectively solve the "cliff effect" in the traditional methods.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. S. Schwarz, M. Preda, V. Baroncini, M. Budagavi, P. Cesar, P. A. Chou, R. A. Cohen, M. Krivokuća, S. Lasserre, Z. Li et al., “Emerging mpeg standards for point cloud compression,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 9, no. 1, pp. 133–148, 2018.
  2. C. E. Shannon, “A mathematical theory of communication,” The Bell system technical journal, vol. 27, no. 3, pp. 379–423, 1948.
  3. T.-Y. Tung, D. B. Kurka, M. Jankowski, and D. Gündüz, “Deepjscc-q: Channel input constrained deep joint source-channel coding,” in ICC 2022-IEEE International Conference on Communications.   IEEE, 2022, pp. 3880–3885.
  4. E. Bourtsoulatze, D. B. Kurka, and D. Gündüz, “Deep joint source-channel coding for wireless image transmission,” IEEE Transactions on Cognitive Communications and Networking, vol. 5, no. 3, pp. 567–579, 2019.
  5. D. B. Kurka and D. Gündüz, “Deepjscc-f: Deep joint source-channel coding of images with feedback,” IEEE Journal on Selected Areas in Information Theory, vol. 1, no. 1, pp. 178–193, 2020.
  6. K. Choi, K. Tatwawadi, A. Grover, T. Weissman, and S. Ermon, “Neural joint source-channel coding,” in International Conference on Machine Learning.   PMLR, 2019, pp. 1182–1192.
  7. N. Farsad, M. Rao, and A. Goldsmith, “Deep learning for joint source-channel coding of text,” in 2018 IEEE international conference on acoustics, speech and signal processing (ICASSP).   IEEE, 2018, pp. 2326–2330.
  8. H. Xie, Z. Qin, G. Y. Li, and B.-H. Juang, “Deep learning enabled semantic communication systems,” IEEE Transactions on Signal Processing, vol. 69, pp. 2663–2675, 2021.
  9. J. Dai, S. Wang, K. Tan, Z. Si, X. Qin, K. Niu, and P. Zhang, “Nonlinear transform source-channel coding for semantic communications,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 8, pp. 2300–2316, 2022.
  10. C. Dong, H. Liang, X. Xu, S. Han, B. Wang, and P. Zhang, “Semantic communication system based on semantic slice models propagation,” IEEE Journal on Selected Areas in Communications, vol. 41, no. 1, pp. 202–213, 2022.
  11. S. Wang, J. Dai, Z. Liang, K. Niu, Z. Si, C. Dong, X. Qin, and P. Zhang, “Wireless deep video semantic transmission,” IEEE Journal on Selected Areas in Communications, vol. 41, no. 1, pp. 214–229, 2022.
  12. Y. Zhu, Y. Huang, X. Qiao, Z. Tan, B. Bai, H. Ma, and S. Dustdar, “A semantic-aware transmission with adaptive control scheme for volumetric video service,” IEEE Transactions on Multimedia, 2022.
  13. Y. Huang, B. Bai, Y. Zhu, X. Qiao, X. Su, and P. Zhang, “Iscom: Interest-aware semantic communication scheme for point cloud video streaming,” arXiv preprint arXiv:2210.06808, 2022.
  14. B. Zhang, Z. Qin, and G. Y. Li, “Semantic communications with variable-length coding for extended reality,” arXiv preprint arXiv:2302.08645, 2023.
  15. P. Zhang, X. Xu, C. Dong, K. Niu, H. Liang, Z. Liang, X. Qin, M. Sun, H. Chen, N. Ma et al., “Model division multiple access for semantic communications,” Frontiers of Information Technology & Electronic Engineering, pp. 1–12, 2023.
  16. J. Wang, H. Zhu, H. Liu, and Z. Ma, “Lossy point cloud geometry compression via end-to-end learning,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 31, no. 12, pp. 4909–4923, 2021.
  17. A. Brock, T. Lim, J. M. Ritchie, and N. Weston, “Generative and discriminative voxel modeling with convolutional neural networks,” arXiv preprint arXiv:1608.04236, 2016.
  18. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
  19. R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-cam: Visual explanations from deep networks via gradient-based localization,” in Proceedings of the IEEE international conference on computer vision, 2017, pp. 618–626.
  20. L. Yan, Z. Qin, R. Zhang, Y. Li, and G. Y. Li, “Resource allocation for text semantic communications,” IEEE Wireless Communications Letters, vol. 11, no. 7, pp. 1394–1398, 2022.
  21. A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su et al., “Shapenet: An information-rich 3d model repository,” arXiv preprint arXiv:1512.03012, 2015.
  22. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
  23. E. d’Eon, B. Harrison, T. Myers, and P. A. Chou, “8i voxelized full bodies-a voxelized point cloud dataset,” ISO/IEC JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG) input document WG11M40059/WG1M74006, vol. 7, no. 8, p. 11, 2017.
  24. C. Loop, Q. Cai, S. O. Escolano, and P. A. Chou, “Microsoft voxelized upper bodies-a voxelized point cloud dataset,” ISO/IEC JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG) input document m38673 M, vol. 72012, p. 2016, 2016.
  25. Z. Bao, H. Liang, C. Dong, X. Xu, and G. Liu, “Mdvsc–wireless model division video semantic communication,” arXiv preprint arXiv:2305.15799, 2023.
  26. “Mpeg-pcc-tmc13,” https://github.com/MPEGGroup/mpeg-pcc-tmc13, 2020.
  27. “Point cloud library,” https://pointclouds.org/, 2011.
  28. D. Tian, H. Ochimizu, C. Feng, R. Cohen, and A. Vetro, “Geometric distortion metrics for point cloud compression,” in 2017 IEEE International Conference on Image Processing (ICIP).   IEEE, 2017, pp. 3460–3464.
  29. Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3d shapenets: A deep representation for volumetric shapes,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1912–1920.
Citations (6)

Summary

We haven't generated a summary for this paper yet.