Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reactive and human-in-the-loop planning and control of multi-robot systems under LTL specifications in dynamic environments (2307.06000v1)

Published 12 Jul 2023 in cs.RO, cs.SY, and eess.SY

Abstract: This paper investigates the planning and control problems for multi-robot systems under linear temporal logic (LTL) specifications. In contrast to most of existing literature, which presumes a static and known environment, our study focuses on dynamic environments that can have unknown moving obstacles like humans walking through. Depending on whether local communication is allowed between robots, we consider two different online re-planning approaches. When local communication is allowed, we propose a local trajectory generation algorithm for each robot to resolve conflicts that are detected on-line. In the other case, i.e., no communication is allowed, we develop a model predictive controller to reactively avoid potential collisions. In both cases, task satisfaction is guaranteed whenever it is feasible. In addition, we consider the human-in-the-loop scenario where humans may additionally take control of one or multiple robots. We design a mixed initiative controller for each robot to prevent unsafe human behaviors while guarantee the LTL satisfaction. Using our previous developed ROS software package, several experiments are conducted to demonstrate the effectiveness and the applicability of the proposed strategies.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas, “Temporal logic motion planning for dynamic robots,” Automatica, vol. 45, no. 2, pp. 343–352, 2009.
  2. C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G. J. Pappas, “Symbolic planning and control of robot motion [grand challenges of robotics],” IEEE Robotics & Automation Magazine, vol. 14, no. 1, pp. 61–70, 2007.
  3. M. Kloetzer and C. Belta, “A fully automated framework for control of linear systems from temporal logic specifications,” IEEE Transactions on Automatic Control, vol. 53, no. 1, pp. 287–297, 2008.
  4. T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon temporal logic planning,” IEEE Transactions on Automatic Control, vol. 57, no. 11, pp. 2817–2830, 2012.
  5. A. Ulusoy, S. L. Smith, X. C. Ding, C. Belta, and D. Rus, “Optimality and robustness in multi-robot path planning with temporal logic constraints,” The International Journal of Robotics Research, vol. 32, no. 8, pp. 889–911, 2013.
  6. Y. E. Sahin, P. Nilsson, and N. Ozay, “Multirobot coordination with counting temporal logics,” IEEE Transactions on Robotics, 2019.
  7. Y. Kantaros and M. M. Zavlanos, “STyLuS*: A temporal logic optimal control synthesis algorithm for large-scale multi-robot systems,” The International Journal of Robotics Research, vol. 39, no. 7, pp. 812–836, 2020.
  8. J. Alonso-Mora, J. A. DeCastro, V. Raman, D. Rus, and H. Kress-Gazit, “Reactive mission and motion planning with deadlock resolution avoiding dynamic obstacles,” Autonomous Robots, vol. 42, no. 4, pp. 801–824, 2018.
  9. M. Guo and D. V. Dimarogonas, “Multi-agent plan reconfiguration under local LTL specifications,” The International Journal of Robotics Research, vol. 34, no. 2, pp. 218–235, 2015.
  10. M. Guo and M. M. Zavlanos, “Probabilistic motion planning under temporal tasks and soft constraints,” IEEE Transactions on Automatic Control, vol. 63, no. 12, pp. 4051–4066, 2018.
  11. T. Fong, I. Nourbakhsh, and K. Dautenhahn, “A survey of socially interactive robots,” Robotics and autonomous systems, vol. 42, no. 3-4, pp. 143–166, 2003.
  12. M. Guo, K. H. Johansson, and D. V. Dimarogonas, “Revising motion planning under linear temporal logic specifications in partially known workspaces,” in 2013 IEEE international conference on robotics and automation.   IEEE, 2013, pp. 5025–5032.
  13. M. Lahijanian, M. R. Maly, D. Fried, L. E. Kavraki, H. Kress-Gazit, and M. Y. Vardi, “Iterative temporal planning in uncertain environments with partial satisfaction guarantees,” IEEE Transactions on Robotics, vol. 32, no. 3, pp. 583–599, 2016.
  14. P. Yu and D. V. Dimarogonas, “Distributed motion coordination for multirobot systems under LTL specifications,” IEEE Transactions on Robotics, vol. 38, no. 2, pp. 1047–1062, 2021.
  15. S. G. Loizou and V. Kumar, “Mixed initiative control of autonomous vehicles,” in Proceedings 2007 IEEE International Conference on Robotics and Automation.   IEEE, 2007, pp. 1431–1436.
  16. M. Guo, S. Andersson, and D. V. Dimarogonas, “Human-in-the-loop mixed-initiative control under temporal tasks,” in 2018 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2018, pp. 6395–6400.
  17. J. R. Büchi, “On a decision method in restricted second order arithmetic,” in The Collected Works of J. Richard Büchi.   Springer, 1990, pp. 425–435.
  18. P. Gastin and D. Oddoux, “Fast LTL to Büchi automata translation,” in International Conference on Computer Aided Verification.   Springer, 2001, pp. 53–65.
  19. R. Baran, X. Tan, P. Varnai, P. Yu, S. Ahlberg, M. Guo, W. S. Cortez, and D. V. Dimarogonas, “A ros package for human-in-the-loop planning and control under linear temporal logic tasks,” in 2021 IEEE 17th International Conference on Automation Science and Engineering (CASE).   IEEE, 2021, pp. 2182–2187.
  20. C. I. Vasile and C. Belta, “Sampling-based temporal logic path planning,” in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, pp. 4817–4822.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Pian Yu (13 papers)
  2. Gianmarco Fedeli (1 paper)
  3. Dimos V. Dimarogonas (194 papers)

Summary

We haven't generated a summary for this paper yet.