Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Tractable Statistical Representation of IFTR Fading with Applications (2307.05925v1)

Published 12 Jul 2023 in cs.IT, eess.SP, and math.IT

Abstract: The recently introduced independent fluctuating two-ray (IFTR) fading model, consisting of two specular components fluctuating independently plus a diffuse component, has proven to provide an excellent fit to different wireless environments, including the millimeter-wave band. However, the original formulations of the probability density function (PDF) and cumulative distribution function (CDF) of this model are not applicable to all possible values of its defining parameters, and are given in terms of multifold generalized hypergeometric functions, which prevents their widespread use for the derivation of performance metric expressions. In this paper we present a new formulation of the IFTR model as a countable mixture of Gamma distributions which greatly facilitates the performance evaluation for this model in terms of the metrics already known for the much simpler and widely used Nakagami-m fading. Additionally, a closed-form expression is presented for the generalized moment generating function (GMGF), which permits to readily obtain all the moments of the distribution of the model, as well as several relevant performance metrics. Based on these new derivations, the IFTR model is evaluated for the average channel capacity, the outage probability with and without co-channel interference, and the bit error rate (BER), which are verified by Monte Carlo simulations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag., vol. 52, no. 2, pp. 74–80, 2014.
  2. T. R. R. Marins, A. A. Dos Anjos, C. R. N. Da Silva, V. M. R. Peñarrocha, L. Rubio, J. Reig, R. A. A. De Souza, and M. D. Yacoub, “Fading evaluation in standardized 5G millimeter-wave band,” IEEE Access, vol. 9, pp. 67 268–67 280, 2021.
  3. A. N. Uwaechia and N. M. Mahyuddin, “A comprehensive survey on millimeter wave communications for fifth-generation wireless networks: Feasibility and challenges,” IEEE Access, vol. 8, pp. 62 367–62 414, 2020.
  4. T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave mobile communications for 5G cellular: It will work!” IEEE Access, vol. 1, pp. 335–349, 2013.
  5. M. Olyaee, J. A. Cortés, F. J. Lopez-Martinez, J. F. Paris, and J. M. Romero-Jerez, “The fluctuating two-ray fading model with independent specular components,” IEEE Trans. Veh. Technol., vol. 72, no. 5, pp. 5533–5545, 2023.
  6. J. M. Romero-Jerez, F. J. Lopez-Martinez, J. F. Paris, and A. J. Goldsmith, “The fluctuating two-ray fading model: Statistical characterization and performance analysis,” IEEE Trans. Wireless Commun., vol. 16, no. 7, pp. 4420–4432, 2017.
  7. J. Zhang, W. Zeng, X. Li, Q. Sun, and K. P. Peppas, “New results on the fluctuating two-ray model with arbitrary fading parameters and its applications,” IEEE Trans. Veh. Technol., vol. 67, no. 3, pp. 2766–2770, 2017.
  8. M. López-Benítez and J. Zhang, “Comments and corrections to “new results on the fluctuating two-ray model with arbitrary fading parameters and its applications”,” IEEE Trans. Veh. Technol., vol. 70, no. 2, pp. 1938–1940, 2021.
  9. M. Olyaee, J. M. Romero-Jerez, F. J. Lopez-Martinez, and A. J. Goldsmith, “Alternative formulations for the fluctuating two-ray fading model,” IEEE Trans. Wireless Commun., vol. 21, no. 11, pp. 9404–9416, 2022.
  10. J. Paris, “Statistical characterization of κ𝜅\kappaitalic_κ-μ𝜇\muitalic_μ shadowed fading,” IEEE Trans. Veh. Technol., vol. 63, no. 2, pp. 518–526, Feb. 2014.
  11. G. Durgin, T. Rappaport, and D. A. de Wolf, “New analytical models and probability density functions for fading in wireless communications,” IEEE Trans. Commun., vol. 50, no. 6, pp. 1005–1015, Jun. 2002.
  12. A. Abdi, W. C. Lau, M.-S. Alouini, and M. Kaveh, “A new simple model for land mobile satellite channels: First-and second-order statistics,” IEEE Trans. Wireless Commun., vol. 2, no. 3, pp. 519–528, 2003.
  13. L. Moreno-Pozas, F. J. Lopez-Martinez, J. F. Paris, and E. Martos-Naya, “The κ𝜅\kappaitalic_κ–μ𝜇\muitalic_μ shadowed fading model: Unifying the κ𝜅\kappaitalic_κ–μ𝜇\muitalic_μ and η𝜂\etaitalic_η–μ𝜇\muitalic_μ distributions,” IEEE Trans. Veh. Technol., vol. 65, no. 12, pp. 9630–9641, 2016.
  14. N. Y. Ermolova, “Capacity analysis of two-wave with diffuse power fading channels using a mixture of gamma distributions,” IEEE Commun. Lett., vol. 20, no. 11, pp. 2245–2248, 2016.
  15. P. Ramírez-Espinosa and F. J. Lopez-Martinez, “Composite fading models based on inverse gamma shadowing: Theory and validation,” IEEE Trans. Wireless Commun., vol. 20, no. 8, pp. 5034–5045, 2021.
  16. M. Rao, F. J. Lopez-Martinez, M.-S. Alouini, and A. Goldsmith, “MGF approach to the analysis of generalized two-ray fading models,” IEEE Trans. Wireless Commun., vol. 14, no. 5, pp. 2548–2561, 2015.
  17. M.-S. Alouini and A. Goldsmith, “Capacity of nakagami multipath fading channels,” in 1997 IEEE 47th Vehicular Technology Conference. Technology in Motion, vol. 1.   IEEE, 1997, pp. 358–362.
  18. J. M. Romero-jerez and A. J. Goldsmith, “Receive antenna array strategies in fading and interference: An outage probability comparison,” IEEE Trans. Wireless Commun., vol. 7, no. 3, pp. 920–932, 2008.
  19. F. J. López-Martínez, E. Martos-Naya, J. F. Paris, and U. Fernández-Plazaola, “Generalized BER Analysis of QAM and Its Application to MRC Under Imperfect CSI and Interference in Ricean Fading Channels,” IEEE Trans. Veh. Technol., vol. 59, no. 5, pp. 2598–2604, 2010.
  20. M. Olyaee, J. P. Peña-Martín, F. J. Lopez-Martinez, and J. M. Romero-Jerez, “Statistical characterization of the multicluster two-wave fading model,” in 2022 5th International Conference on Advanced Communication Technologies and Networking (CommNet).   IEEE, 2022.
Citations (5)

Summary

We haven't generated a summary for this paper yet.