Grain and Grain Boundary Segmentation using Machine Learning with Real and Generated Datasets (2307.05911v1)
Abstract: We report significantly improved accuracy of grain boundary segmentation using Convolutional Neural Networks (CNN) trained on a combination of real and generated data. Manual segmentation is accurate but time-consuming, and existing computational methods are faster but often inaccurate. To combat this dilemma, machine learning models can be used to achieve the accuracy of manual segmentation and have the efficiency of a computational method. An extensive dataset of from 316L stainless steel samples is additively manufactured, prepared, polished, etched, and then microstructure grain images were systematically collected. Grain segmentation via existing computational methods and manual (by-hand) were conducted, to create "real" training data. A Voronoi tessellation pattern combined with random synthetic noise and simulated defects, is developed to create a novel artificial grain image fabrication method. This provided training data supplementation for data-intensive machine learning methods. The accuracy of the grain measurements from microstructure images segmented via computational methods and machine learning methods proposed in this work are calculated and compared to provide much benchmarks in grain segmentation. Over 400 images of the microstructure of stainless steel samples were manually segmented for machine learning training applications. This data and the artificial data is available on Kaggle.
- Schempp, P., Cross, C., Häcker, R., Pittner, A., Rethmeier, M.: Influence of grain size on mechanical properties of aluminium gta weld metal. Welding in the World 57(3), 293–304 (2013) (3) Wang, N., Wang, Z., Aust, K., Erb, U.: Effect of grain size on mechanical properties of nanocrystalline materials. Acta Metallurgica et Materialia 43(2), 519–528 (1995) (4) Bai, Y., Wagner, G., Williams, C.B.: Effect of particle size distribution on powder packing and sintering in binder jetting additive manufacturing of metals. Journal of Manufacturing Science and Engineering 139(8) (2017) (5) Voyiadjis, G., Abed, F.: Transient localizations in metals using microstructure-based yield surfaces. Modelling and Simulation in Materials Science and Engineering 15(1), 83 (2006) (6) Heo, S., Yun, J., Oh, K., Han, K.: Influence of particle size and shape on electrical and mechanical properties of graphite reinforced conductive polymer composites for the bipolar plate of pem fuel cells. Advanced composite materials 15(1), 115–126 (2006) (7) Uddin, S.M., Mahmud, T., Wolf, C., Glanz, C., Kolaric, I., Volkmer, C., Höller, H., Wienecke, U., Roth, S., Fecht, H.-J.: Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites. Composites Science and Technology 70(16), 2253–2257 (2010) (8) Ali, H., Stein, Z., Fouliard, Q., Ebrahimi, H., Warren, P., Raghavan, S., Ghosh, R.: Computational model of mechano-electrochemical effect of aluminum alloys corrosion. Journal of Engineering for Gas Turbines and Power 144(4), 041004 (2022) (9) Adam, K., Zöllner, D., Field, D.P.: 3d microstructural evolution of primary recrystallization and grain growth in cold rolled single-phase aluminum alloys. Modelling and Simulation in Materials Science and Engineering 26(3), 035011 (2018) (10) Chen, F., Cui, Z., Liu, J., Zhang, X., Chen, W.: Modeling and simulation on dynamic recrystallization of 30cr2ni4mov rotor steel using the cellular automaton method. Modelling and Simulation in Materials Science and Engineering 17(7), 075015 (2009) (11) Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Wang, N., Wang, Z., Aust, K., Erb, U.: Effect of grain size on mechanical properties of nanocrystalline materials. Acta Metallurgica et Materialia 43(2), 519–528 (1995) (4) Bai, Y., Wagner, G., Williams, C.B.: Effect of particle size distribution on powder packing and sintering in binder jetting additive manufacturing of metals. Journal of Manufacturing Science and Engineering 139(8) (2017) (5) Voyiadjis, G., Abed, F.: Transient localizations in metals using microstructure-based yield surfaces. Modelling and Simulation in Materials Science and Engineering 15(1), 83 (2006) (6) Heo, S., Yun, J., Oh, K., Han, K.: Influence of particle size and shape on electrical and mechanical properties of graphite reinforced conductive polymer composites for the bipolar plate of pem fuel cells. Advanced composite materials 15(1), 115–126 (2006) (7) Uddin, S.M., Mahmud, T., Wolf, C., Glanz, C., Kolaric, I., Volkmer, C., Höller, H., Wienecke, U., Roth, S., Fecht, H.-J.: Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites. Composites Science and Technology 70(16), 2253–2257 (2010) (8) Ali, H., Stein, Z., Fouliard, Q., Ebrahimi, H., Warren, P., Raghavan, S., Ghosh, R.: Computational model of mechano-electrochemical effect of aluminum alloys corrosion. Journal of Engineering for Gas Turbines and Power 144(4), 041004 (2022) (9) Adam, K., Zöllner, D., Field, D.P.: 3d microstructural evolution of primary recrystallization and grain growth in cold rolled single-phase aluminum alloys. Modelling and Simulation in Materials Science and Engineering 26(3), 035011 (2018) (10) Chen, F., Cui, Z., Liu, J., Zhang, X., Chen, W.: Modeling and simulation on dynamic recrystallization of 30cr2ni4mov rotor steel using the cellular automaton method. Modelling and Simulation in Materials Science and Engineering 17(7), 075015 (2009) (11) Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Bai, Y., Wagner, G., Williams, C.B.: Effect of particle size distribution on powder packing and sintering in binder jetting additive manufacturing of metals. Journal of Manufacturing Science and Engineering 139(8) (2017) (5) Voyiadjis, G., Abed, F.: Transient localizations in metals using microstructure-based yield surfaces. Modelling and Simulation in Materials Science and Engineering 15(1), 83 (2006) (6) Heo, S., Yun, J., Oh, K., Han, K.: Influence of particle size and shape on electrical and mechanical properties of graphite reinforced conductive polymer composites for the bipolar plate of pem fuel cells. Advanced composite materials 15(1), 115–126 (2006) (7) Uddin, S.M., Mahmud, T., Wolf, C., Glanz, C., Kolaric, I., Volkmer, C., Höller, H., Wienecke, U., Roth, S., Fecht, H.-J.: Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites. Composites Science and Technology 70(16), 2253–2257 (2010) (8) Ali, H., Stein, Z., Fouliard, Q., Ebrahimi, H., Warren, P., Raghavan, S., Ghosh, R.: Computational model of mechano-electrochemical effect of aluminum alloys corrosion. Journal of Engineering for Gas Turbines and Power 144(4), 041004 (2022) (9) Adam, K., Zöllner, D., Field, D.P.: 3d microstructural evolution of primary recrystallization and grain growth in cold rolled single-phase aluminum alloys. Modelling and Simulation in Materials Science and Engineering 26(3), 035011 (2018) (10) Chen, F., Cui, Z., Liu, J., Zhang, X., Chen, W.: Modeling and simulation on dynamic recrystallization of 30cr2ni4mov rotor steel using the cellular automaton method. Modelling and Simulation in Materials Science and Engineering 17(7), 075015 (2009) (11) Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Voyiadjis, G., Abed, F.: Transient localizations in metals using microstructure-based yield surfaces. Modelling and Simulation in Materials Science and Engineering 15(1), 83 (2006) (6) Heo, S., Yun, J., Oh, K., Han, K.: Influence of particle size and shape on electrical and mechanical properties of graphite reinforced conductive polymer composites for the bipolar plate of pem fuel cells. Advanced composite materials 15(1), 115–126 (2006) (7) Uddin, S.M., Mahmud, T., Wolf, C., Glanz, C., Kolaric, I., Volkmer, C., Höller, H., Wienecke, U., Roth, S., Fecht, H.-J.: Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites. Composites Science and Technology 70(16), 2253–2257 (2010) (8) Ali, H., Stein, Z., Fouliard, Q., Ebrahimi, H., Warren, P., Raghavan, S., Ghosh, R.: Computational model of mechano-electrochemical effect of aluminum alloys corrosion. Journal of Engineering for Gas Turbines and Power 144(4), 041004 (2022) (9) Adam, K., Zöllner, D., Field, D.P.: 3d microstructural evolution of primary recrystallization and grain growth in cold rolled single-phase aluminum alloys. Modelling and Simulation in Materials Science and Engineering 26(3), 035011 (2018) (10) Chen, F., Cui, Z., Liu, J., Zhang, X., Chen, W.: Modeling and simulation on dynamic recrystallization of 30cr2ni4mov rotor steel using the cellular automaton method. Modelling and Simulation in Materials Science and Engineering 17(7), 075015 (2009) (11) Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Heo, S., Yun, J., Oh, K., Han, K.: Influence of particle size and shape on electrical and mechanical properties of graphite reinforced conductive polymer composites for the bipolar plate of pem fuel cells. Advanced composite materials 15(1), 115–126 (2006) (7) Uddin, S.M., Mahmud, T., Wolf, C., Glanz, C., Kolaric, I., Volkmer, C., Höller, H., Wienecke, U., Roth, S., Fecht, H.-J.: Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites. Composites Science and Technology 70(16), 2253–2257 (2010) (8) Ali, H., Stein, Z., Fouliard, Q., Ebrahimi, H., Warren, P., Raghavan, S., Ghosh, R.: Computational model of mechano-electrochemical effect of aluminum alloys corrosion. Journal of Engineering for Gas Turbines and Power 144(4), 041004 (2022) (9) Adam, K., Zöllner, D., Field, D.P.: 3d microstructural evolution of primary recrystallization and grain growth in cold rolled single-phase aluminum alloys. Modelling and Simulation in Materials Science and Engineering 26(3), 035011 (2018) (10) Chen, F., Cui, Z., Liu, J., Zhang, X., Chen, W.: Modeling and simulation on dynamic recrystallization of 30cr2ni4mov rotor steel using the cellular automaton method. Modelling and Simulation in Materials Science and Engineering 17(7), 075015 (2009) (11) Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Uddin, S.M., Mahmud, T., Wolf, C., Glanz, C., Kolaric, I., Volkmer, C., Höller, H., Wienecke, U., Roth, S., Fecht, H.-J.: Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites. Composites Science and Technology 70(16), 2253–2257 (2010) (8) Ali, H., Stein, Z., Fouliard, Q., Ebrahimi, H., Warren, P., Raghavan, S., Ghosh, R.: Computational model of mechano-electrochemical effect of aluminum alloys corrosion. Journal of Engineering for Gas Turbines and Power 144(4), 041004 (2022) (9) Adam, K., Zöllner, D., Field, D.P.: 3d microstructural evolution of primary recrystallization and grain growth in cold rolled single-phase aluminum alloys. Modelling and Simulation in Materials Science and Engineering 26(3), 035011 (2018) (10) Chen, F., Cui, Z., Liu, J., Zhang, X., Chen, W.: Modeling and simulation on dynamic recrystallization of 30cr2ni4mov rotor steel using the cellular automaton method. Modelling and Simulation in Materials Science and Engineering 17(7), 075015 (2009) (11) Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Ali, H., Stein, Z., Fouliard, Q., Ebrahimi, H., Warren, P., Raghavan, S., Ghosh, R.: Computational model of mechano-electrochemical effect of aluminum alloys corrosion. Journal of Engineering for Gas Turbines and Power 144(4), 041004 (2022) (9) Adam, K., Zöllner, D., Field, D.P.: 3d microstructural evolution of primary recrystallization and grain growth in cold rolled single-phase aluminum alloys. Modelling and Simulation in Materials Science and Engineering 26(3), 035011 (2018) (10) Chen, F., Cui, Z., Liu, J., Zhang, X., Chen, W.: Modeling and simulation on dynamic recrystallization of 30cr2ni4mov rotor steel using the cellular automaton method. Modelling and Simulation in Materials Science and Engineering 17(7), 075015 (2009) (11) Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Adam, K., Zöllner, D., Field, D.P.: 3d microstructural evolution of primary recrystallization and grain growth in cold rolled single-phase aluminum alloys. Modelling and Simulation in Materials Science and Engineering 26(3), 035011 (2018) (10) Chen, F., Cui, Z., Liu, J., Zhang, X., Chen, W.: Modeling and simulation on dynamic recrystallization of 30cr2ni4mov rotor steel using the cellular automaton method. Modelling and Simulation in Materials Science and Engineering 17(7), 075015 (2009) (11) Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Chen, F., Cui, Z., Liu, J., Zhang, X., Chen, W.: Modeling and simulation on dynamic recrystallization of 30cr2ni4mov rotor steel using the cellular automaton method. Modelling and Simulation in Materials Science and Engineering 17(7), 075015 (2009) (11) Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer
- Wang, N., Wang, Z., Aust, K., Erb, U.: Effect of grain size on mechanical properties of nanocrystalline materials. Acta Metallurgica et Materialia 43(2), 519–528 (1995) (4) Bai, Y., Wagner, G., Williams, C.B.: Effect of particle size distribution on powder packing and sintering in binder jetting additive manufacturing of metals. Journal of Manufacturing Science and Engineering 139(8) (2017) (5) Voyiadjis, G., Abed, F.: Transient localizations in metals using microstructure-based yield surfaces. Modelling and Simulation in Materials Science and Engineering 15(1), 83 (2006) (6) Heo, S., Yun, J., Oh, K., Han, K.: Influence of particle size and shape on electrical and mechanical properties of graphite reinforced conductive polymer composites for the bipolar plate of pem fuel cells. Advanced composite materials 15(1), 115–126 (2006) (7) Uddin, S.M., Mahmud, T., Wolf, C., Glanz, C., Kolaric, I., Volkmer, C., Höller, H., Wienecke, U., Roth, S., Fecht, H.-J.: Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites. Composites Science and Technology 70(16), 2253–2257 (2010) (8) Ali, H., Stein, Z., Fouliard, Q., Ebrahimi, H., Warren, P., Raghavan, S., Ghosh, R.: Computational model of mechano-electrochemical effect of aluminum alloys corrosion. Journal of Engineering for Gas Turbines and Power 144(4), 041004 (2022) (9) Adam, K., Zöllner, D., Field, D.P.: 3d microstructural evolution of primary recrystallization and grain growth in cold rolled single-phase aluminum alloys. Modelling and Simulation in Materials Science and Engineering 26(3), 035011 (2018) (10) Chen, F., Cui, Z., Liu, J., Zhang, X., Chen, W.: Modeling and simulation on dynamic recrystallization of 30cr2ni4mov rotor steel using the cellular automaton method. Modelling and Simulation in Materials Science and Engineering 17(7), 075015 (2009) (11) Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Bai, Y., Wagner, G., Williams, C.B.: Effect of particle size distribution on powder packing and sintering in binder jetting additive manufacturing of metals. Journal of Manufacturing Science and Engineering 139(8) (2017) (5) Voyiadjis, G., Abed, F.: Transient localizations in metals using microstructure-based yield surfaces. Modelling and Simulation in Materials Science and Engineering 15(1), 83 (2006) (6) Heo, S., Yun, J., Oh, K., Han, K.: Influence of particle size and shape on electrical and mechanical properties of graphite reinforced conductive polymer composites for the bipolar plate of pem fuel cells. Advanced composite materials 15(1), 115–126 (2006) (7) Uddin, S.M., Mahmud, T., Wolf, C., Glanz, C., Kolaric, I., Volkmer, C., Höller, H., Wienecke, U., Roth, S., Fecht, H.-J.: Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites. Composites Science and Technology 70(16), 2253–2257 (2010) (8) Ali, H., Stein, Z., Fouliard, Q., Ebrahimi, H., Warren, P., Raghavan, S., Ghosh, R.: Computational model of mechano-electrochemical effect of aluminum alloys corrosion. Journal of Engineering for Gas Turbines and Power 144(4), 041004 (2022) (9) Adam, K., Zöllner, D., Field, D.P.: 3d microstructural evolution of primary recrystallization and grain growth in cold rolled single-phase aluminum alloys. Modelling and Simulation in Materials Science and Engineering 26(3), 035011 (2018) (10) Chen, F., Cui, Z., Liu, J., Zhang, X., Chen, W.: Modeling and simulation on dynamic recrystallization of 30cr2ni4mov rotor steel using the cellular automaton method. Modelling and Simulation in Materials Science and Engineering 17(7), 075015 (2009) (11) Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Voyiadjis, G., Abed, F.: Transient localizations in metals using microstructure-based yield surfaces. Modelling and Simulation in Materials Science and Engineering 15(1), 83 (2006) (6) Heo, S., Yun, J., Oh, K., Han, K.: Influence of particle size and shape on electrical and mechanical properties of graphite reinforced conductive polymer composites for the bipolar plate of pem fuel cells. Advanced composite materials 15(1), 115–126 (2006) (7) Uddin, S.M., Mahmud, T., Wolf, C., Glanz, C., Kolaric, I., Volkmer, C., Höller, H., Wienecke, U., Roth, S., Fecht, H.-J.: Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites. Composites Science and Technology 70(16), 2253–2257 (2010) (8) Ali, H., Stein, Z., Fouliard, Q., Ebrahimi, H., Warren, P., Raghavan, S., Ghosh, R.: Computational model of mechano-electrochemical effect of aluminum alloys corrosion. Journal of Engineering for Gas Turbines and Power 144(4), 041004 (2022) (9) Adam, K., Zöllner, D., Field, D.P.: 3d microstructural evolution of primary recrystallization and grain growth in cold rolled single-phase aluminum alloys. Modelling and Simulation in Materials Science and Engineering 26(3), 035011 (2018) (10) Chen, F., Cui, Z., Liu, J., Zhang, X., Chen, W.: Modeling and simulation on dynamic recrystallization of 30cr2ni4mov rotor steel using the cellular automaton method. Modelling and Simulation in Materials Science and Engineering 17(7), 075015 (2009) (11) Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Heo, S., Yun, J., Oh, K., Han, K.: Influence of particle size and shape on electrical and mechanical properties of graphite reinforced conductive polymer composites for the bipolar plate of pem fuel cells. Advanced composite materials 15(1), 115–126 (2006) (7) Uddin, S.M., Mahmud, T., Wolf, C., Glanz, C., Kolaric, I., Volkmer, C., Höller, H., Wienecke, U., Roth, S., Fecht, H.-J.: Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites. Composites Science and Technology 70(16), 2253–2257 (2010) (8) Ali, H., Stein, Z., Fouliard, Q., Ebrahimi, H., Warren, P., Raghavan, S., Ghosh, R.: Computational model of mechano-electrochemical effect of aluminum alloys corrosion. Journal of Engineering for Gas Turbines and Power 144(4), 041004 (2022) (9) Adam, K., Zöllner, D., Field, D.P.: 3d microstructural evolution of primary recrystallization and grain growth in cold rolled single-phase aluminum alloys. Modelling and Simulation in Materials Science and Engineering 26(3), 035011 (2018) (10) Chen, F., Cui, Z., Liu, J., Zhang, X., Chen, W.: Modeling and simulation on dynamic recrystallization of 30cr2ni4mov rotor steel using the cellular automaton method. Modelling and Simulation in Materials Science and Engineering 17(7), 075015 (2009) (11) Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Uddin, S.M., Mahmud, T., Wolf, C., Glanz, C., Kolaric, I., Volkmer, C., Höller, H., Wienecke, U., Roth, S., Fecht, H.-J.: Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites. Composites Science and Technology 70(16), 2253–2257 (2010) (8) Ali, H., Stein, Z., Fouliard, Q., Ebrahimi, H., Warren, P., Raghavan, S., Ghosh, R.: Computational model of mechano-electrochemical effect of aluminum alloys corrosion. Journal of Engineering for Gas Turbines and Power 144(4), 041004 (2022) (9) Adam, K., Zöllner, D., Field, D.P.: 3d microstructural evolution of primary recrystallization and grain growth in cold rolled single-phase aluminum alloys. Modelling and Simulation in Materials Science and Engineering 26(3), 035011 (2018) (10) Chen, F., Cui, Z., Liu, J., Zhang, X., Chen, W.: Modeling and simulation on dynamic recrystallization of 30cr2ni4mov rotor steel using the cellular automaton method. Modelling and Simulation in Materials Science and Engineering 17(7), 075015 (2009) (11) Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Ali, H., Stein, Z., Fouliard, Q., Ebrahimi, H., Warren, P., Raghavan, S., Ghosh, R.: Computational model of mechano-electrochemical effect of aluminum alloys corrosion. Journal of Engineering for Gas Turbines and Power 144(4), 041004 (2022) (9) Adam, K., Zöllner, D., Field, D.P.: 3d microstructural evolution of primary recrystallization and grain growth in cold rolled single-phase aluminum alloys. Modelling and Simulation in Materials Science and Engineering 26(3), 035011 (2018) (10) Chen, F., Cui, Z., Liu, J., Zhang, X., Chen, W.: Modeling and simulation on dynamic recrystallization of 30cr2ni4mov rotor steel using the cellular automaton method. Modelling and Simulation in Materials Science and Engineering 17(7), 075015 (2009) (11) Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Adam, K., Zöllner, D., Field, D.P.: 3d microstructural evolution of primary recrystallization and grain growth in cold rolled single-phase aluminum alloys. Modelling and Simulation in Materials Science and Engineering 26(3), 035011 (2018) (10) Chen, F., Cui, Z., Liu, J., Zhang, X., Chen, W.: Modeling and simulation on dynamic recrystallization of 30cr2ni4mov rotor steel using the cellular automaton method. Modelling and Simulation in Materials Science and Engineering 17(7), 075015 (2009) (11) Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Chen, F., Cui, Z., Liu, J., Zhang, X., Chen, W.: Modeling and simulation on dynamic recrystallization of 30cr2ni4mov rotor steel using the cellular automaton method. Modelling and Simulation in Materials Science and Engineering 17(7), 075015 (2009) (11) Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer
- Bai, Y., Wagner, G., Williams, C.B.: Effect of particle size distribution on powder packing and sintering in binder jetting additive manufacturing of metals. Journal of Manufacturing Science and Engineering 139(8) (2017) (5) Voyiadjis, G., Abed, F.: Transient localizations in metals using microstructure-based yield surfaces. Modelling and Simulation in Materials Science and Engineering 15(1), 83 (2006) (6) Heo, S., Yun, J., Oh, K., Han, K.: Influence of particle size and shape on electrical and mechanical properties of graphite reinforced conductive polymer composites for the bipolar plate of pem fuel cells. Advanced composite materials 15(1), 115–126 (2006) (7) Uddin, S.M., Mahmud, T., Wolf, C., Glanz, C., Kolaric, I., Volkmer, C., Höller, H., Wienecke, U., Roth, S., Fecht, H.-J.: Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites. Composites Science and Technology 70(16), 2253–2257 (2010) (8) Ali, H., Stein, Z., Fouliard, Q., Ebrahimi, H., Warren, P., Raghavan, S., Ghosh, R.: Computational model of mechano-electrochemical effect of aluminum alloys corrosion. Journal of Engineering for Gas Turbines and Power 144(4), 041004 (2022) (9) Adam, K., Zöllner, D., Field, D.P.: 3d microstructural evolution of primary recrystallization and grain growth in cold rolled single-phase aluminum alloys. Modelling and Simulation in Materials Science and Engineering 26(3), 035011 (2018) (10) Chen, F., Cui, Z., Liu, J., Zhang, X., Chen, W.: Modeling and simulation on dynamic recrystallization of 30cr2ni4mov rotor steel using the cellular automaton method. Modelling and Simulation in Materials Science and Engineering 17(7), 075015 (2009) (11) Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Voyiadjis, G., Abed, F.: Transient localizations in metals using microstructure-based yield surfaces. Modelling and Simulation in Materials Science and Engineering 15(1), 83 (2006) (6) Heo, S., Yun, J., Oh, K., Han, K.: Influence of particle size and shape on electrical and mechanical properties of graphite reinforced conductive polymer composites for the bipolar plate of pem fuel cells. Advanced composite materials 15(1), 115–126 (2006) (7) Uddin, S.M., Mahmud, T., Wolf, C., Glanz, C., Kolaric, I., Volkmer, C., Höller, H., Wienecke, U., Roth, S., Fecht, H.-J.: Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites. Composites Science and Technology 70(16), 2253–2257 (2010) (8) Ali, H., Stein, Z., Fouliard, Q., Ebrahimi, H., Warren, P., Raghavan, S., Ghosh, R.: Computational model of mechano-electrochemical effect of aluminum alloys corrosion. Journal of Engineering for Gas Turbines and Power 144(4), 041004 (2022) (9) Adam, K., Zöllner, D., Field, D.P.: 3d microstructural evolution of primary recrystallization and grain growth in cold rolled single-phase aluminum alloys. Modelling and Simulation in Materials Science and Engineering 26(3), 035011 (2018) (10) Chen, F., Cui, Z., Liu, J., Zhang, X., Chen, W.: Modeling and simulation on dynamic recrystallization of 30cr2ni4mov rotor steel using the cellular automaton method. Modelling and Simulation in Materials Science and Engineering 17(7), 075015 (2009) (11) Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Heo, S., Yun, J., Oh, K., Han, K.: Influence of particle size and shape on electrical and mechanical properties of graphite reinforced conductive polymer composites for the bipolar plate of pem fuel cells. Advanced composite materials 15(1), 115–126 (2006) (7) Uddin, S.M., Mahmud, T., Wolf, C., Glanz, C., Kolaric, I., Volkmer, C., Höller, H., Wienecke, U., Roth, S., Fecht, H.-J.: Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites. Composites Science and Technology 70(16), 2253–2257 (2010) (8) Ali, H., Stein, Z., Fouliard, Q., Ebrahimi, H., Warren, P., Raghavan, S., Ghosh, R.: Computational model of mechano-electrochemical effect of aluminum alloys corrosion. Journal of Engineering for Gas Turbines and Power 144(4), 041004 (2022) (9) Adam, K., Zöllner, D., Field, D.P.: 3d microstructural evolution of primary recrystallization and grain growth in cold rolled single-phase aluminum alloys. Modelling and Simulation in Materials Science and Engineering 26(3), 035011 (2018) (10) Chen, F., Cui, Z., Liu, J., Zhang, X., Chen, W.: Modeling and simulation on dynamic recrystallization of 30cr2ni4mov rotor steel using the cellular automaton method. Modelling and Simulation in Materials Science and Engineering 17(7), 075015 (2009) (11) Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Uddin, S.M., Mahmud, T., Wolf, C., Glanz, C., Kolaric, I., Volkmer, C., Höller, H., Wienecke, U., Roth, S., Fecht, H.-J.: Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites. Composites Science and Technology 70(16), 2253–2257 (2010) (8) Ali, H., Stein, Z., Fouliard, Q., Ebrahimi, H., Warren, P., Raghavan, S., Ghosh, R.: Computational model of mechano-electrochemical effect of aluminum alloys corrosion. Journal of Engineering for Gas Turbines and Power 144(4), 041004 (2022) (9) Adam, K., Zöllner, D., Field, D.P.: 3d microstructural evolution of primary recrystallization and grain growth in cold rolled single-phase aluminum alloys. Modelling and Simulation in Materials Science and Engineering 26(3), 035011 (2018) (10) Chen, F., Cui, Z., Liu, J., Zhang, X., Chen, W.: Modeling and simulation on dynamic recrystallization of 30cr2ni4mov rotor steel using the cellular automaton method. Modelling and Simulation in Materials Science and Engineering 17(7), 075015 (2009) (11) Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Ali, H., Stein, Z., Fouliard, Q., Ebrahimi, H., Warren, P., Raghavan, S., Ghosh, R.: Computational model of mechano-electrochemical effect of aluminum alloys corrosion. Journal of Engineering for Gas Turbines and Power 144(4), 041004 (2022) (9) Adam, K., Zöllner, D., Field, D.P.: 3d microstructural evolution of primary recrystallization and grain growth in cold rolled single-phase aluminum alloys. Modelling and Simulation in Materials Science and Engineering 26(3), 035011 (2018) (10) Chen, F., Cui, Z., Liu, J., Zhang, X., Chen, W.: Modeling and simulation on dynamic recrystallization of 30cr2ni4mov rotor steel using the cellular automaton method. Modelling and Simulation in Materials Science and Engineering 17(7), 075015 (2009) (11) Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Adam, K., Zöllner, D., Field, D.P.: 3d microstructural evolution of primary recrystallization and grain growth in cold rolled single-phase aluminum alloys. Modelling and Simulation in Materials Science and Engineering 26(3), 035011 (2018) (10) Chen, F., Cui, Z., Liu, J., Zhang, X., Chen, W.: Modeling and simulation on dynamic recrystallization of 30cr2ni4mov rotor steel using the cellular automaton method. Modelling and Simulation in Materials Science and Engineering 17(7), 075015 (2009) (11) Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Chen, F., Cui, Z., Liu, J., Zhang, X., Chen, W.: Modeling and simulation on dynamic recrystallization of 30cr2ni4mov rotor steel using the cellular automaton method. Modelling and Simulation in Materials Science and Engineering 17(7), 075015 (2009) (11) Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer
- Voyiadjis, G., Abed, F.: Transient localizations in metals using microstructure-based yield surfaces. Modelling and Simulation in Materials Science and Engineering 15(1), 83 (2006) (6) Heo, S., Yun, J., Oh, K., Han, K.: Influence of particle size and shape on electrical and mechanical properties of graphite reinforced conductive polymer composites for the bipolar plate of pem fuel cells. Advanced composite materials 15(1), 115–126 (2006) (7) Uddin, S.M., Mahmud, T., Wolf, C., Glanz, C., Kolaric, I., Volkmer, C., Höller, H., Wienecke, U., Roth, S., Fecht, H.-J.: Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites. Composites Science and Technology 70(16), 2253–2257 (2010) (8) Ali, H., Stein, Z., Fouliard, Q., Ebrahimi, H., Warren, P., Raghavan, S., Ghosh, R.: Computational model of mechano-electrochemical effect of aluminum alloys corrosion. Journal of Engineering for Gas Turbines and Power 144(4), 041004 (2022) (9) Adam, K., Zöllner, D., Field, D.P.: 3d microstructural evolution of primary recrystallization and grain growth in cold rolled single-phase aluminum alloys. Modelling and Simulation in Materials Science and Engineering 26(3), 035011 (2018) (10) Chen, F., Cui, Z., Liu, J., Zhang, X., Chen, W.: Modeling and simulation on dynamic recrystallization of 30cr2ni4mov rotor steel using the cellular automaton method. Modelling and Simulation in Materials Science and Engineering 17(7), 075015 (2009) (11) Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Heo, S., Yun, J., Oh, K., Han, K.: Influence of particle size and shape on electrical and mechanical properties of graphite reinforced conductive polymer composites for the bipolar plate of pem fuel cells. Advanced composite materials 15(1), 115–126 (2006) (7) Uddin, S.M., Mahmud, T., Wolf, C., Glanz, C., Kolaric, I., Volkmer, C., Höller, H., Wienecke, U., Roth, S., Fecht, H.-J.: Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites. Composites Science and Technology 70(16), 2253–2257 (2010) (8) Ali, H., Stein, Z., Fouliard, Q., Ebrahimi, H., Warren, P., Raghavan, S., Ghosh, R.: Computational model of mechano-electrochemical effect of aluminum alloys corrosion. Journal of Engineering for Gas Turbines and Power 144(4), 041004 (2022) (9) Adam, K., Zöllner, D., Field, D.P.: 3d microstructural evolution of primary recrystallization and grain growth in cold rolled single-phase aluminum alloys. Modelling and Simulation in Materials Science and Engineering 26(3), 035011 (2018) (10) Chen, F., Cui, Z., Liu, J., Zhang, X., Chen, W.: Modeling and simulation on dynamic recrystallization of 30cr2ni4mov rotor steel using the cellular automaton method. Modelling and Simulation in Materials Science and Engineering 17(7), 075015 (2009) (11) Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Uddin, S.M., Mahmud, T., Wolf, C., Glanz, C., Kolaric, I., Volkmer, C., Höller, H., Wienecke, U., Roth, S., Fecht, H.-J.: Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites. Composites Science and Technology 70(16), 2253–2257 (2010) (8) Ali, H., Stein, Z., Fouliard, Q., Ebrahimi, H., Warren, P., Raghavan, S., Ghosh, R.: Computational model of mechano-electrochemical effect of aluminum alloys corrosion. Journal of Engineering for Gas Turbines and Power 144(4), 041004 (2022) (9) Adam, K., Zöllner, D., Field, D.P.: 3d microstructural evolution of primary recrystallization and grain growth in cold rolled single-phase aluminum alloys. Modelling and Simulation in Materials Science and Engineering 26(3), 035011 (2018) (10) Chen, F., Cui, Z., Liu, J., Zhang, X., Chen, W.: Modeling and simulation on dynamic recrystallization of 30cr2ni4mov rotor steel using the cellular automaton method. Modelling and Simulation in Materials Science and Engineering 17(7), 075015 (2009) (11) Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Ali, H., Stein, Z., Fouliard, Q., Ebrahimi, H., Warren, P., Raghavan, S., Ghosh, R.: Computational model of mechano-electrochemical effect of aluminum alloys corrosion. Journal of Engineering for Gas Turbines and Power 144(4), 041004 (2022) (9) Adam, K., Zöllner, D., Field, D.P.: 3d microstructural evolution of primary recrystallization and grain growth in cold rolled single-phase aluminum alloys. Modelling and Simulation in Materials Science and Engineering 26(3), 035011 (2018) (10) Chen, F., Cui, Z., Liu, J., Zhang, X., Chen, W.: Modeling and simulation on dynamic recrystallization of 30cr2ni4mov rotor steel using the cellular automaton method. Modelling and Simulation in Materials Science and Engineering 17(7), 075015 (2009) (11) Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Adam, K., Zöllner, D., Field, D.P.: 3d microstructural evolution of primary recrystallization and grain growth in cold rolled single-phase aluminum alloys. Modelling and Simulation in Materials Science and Engineering 26(3), 035011 (2018) (10) Chen, F., Cui, Z., Liu, J., Zhang, X., Chen, W.: Modeling and simulation on dynamic recrystallization of 30cr2ni4mov rotor steel using the cellular automaton method. Modelling and Simulation in Materials Science and Engineering 17(7), 075015 (2009) (11) Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Chen, F., Cui, Z., Liu, J., Zhang, X., Chen, W.: Modeling and simulation on dynamic recrystallization of 30cr2ni4mov rotor steel using the cellular automaton method. Modelling and Simulation in Materials Science and Engineering 17(7), 075015 (2009) (11) Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer
- Heo, S., Yun, J., Oh, K., Han, K.: Influence of particle size and shape on electrical and mechanical properties of graphite reinforced conductive polymer composites for the bipolar plate of pem fuel cells. Advanced composite materials 15(1), 115–126 (2006) (7) Uddin, S.M., Mahmud, T., Wolf, C., Glanz, C., Kolaric, I., Volkmer, C., Höller, H., Wienecke, U., Roth, S., Fecht, H.-J.: Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites. Composites Science and Technology 70(16), 2253–2257 (2010) (8) Ali, H., Stein, Z., Fouliard, Q., Ebrahimi, H., Warren, P., Raghavan, S., Ghosh, R.: Computational model of mechano-electrochemical effect of aluminum alloys corrosion. Journal of Engineering for Gas Turbines and Power 144(4), 041004 (2022) (9) Adam, K., Zöllner, D., Field, D.P.: 3d microstructural evolution of primary recrystallization and grain growth in cold rolled single-phase aluminum alloys. Modelling and Simulation in Materials Science and Engineering 26(3), 035011 (2018) (10) Chen, F., Cui, Z., Liu, J., Zhang, X., Chen, W.: Modeling and simulation on dynamic recrystallization of 30cr2ni4mov rotor steel using the cellular automaton method. Modelling and Simulation in Materials Science and Engineering 17(7), 075015 (2009) (11) Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Uddin, S.M., Mahmud, T., Wolf, C., Glanz, C., Kolaric, I., Volkmer, C., Höller, H., Wienecke, U., Roth, S., Fecht, H.-J.: Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites. Composites Science and Technology 70(16), 2253–2257 (2010) (8) Ali, H., Stein, Z., Fouliard, Q., Ebrahimi, H., Warren, P., Raghavan, S., Ghosh, R.: Computational model of mechano-electrochemical effect of aluminum alloys corrosion. Journal of Engineering for Gas Turbines and Power 144(4), 041004 (2022) (9) Adam, K., Zöllner, D., Field, D.P.: 3d microstructural evolution of primary recrystallization and grain growth in cold rolled single-phase aluminum alloys. Modelling and Simulation in Materials Science and Engineering 26(3), 035011 (2018) (10) Chen, F., Cui, Z., Liu, J., Zhang, X., Chen, W.: Modeling and simulation on dynamic recrystallization of 30cr2ni4mov rotor steel using the cellular automaton method. Modelling and Simulation in Materials Science and Engineering 17(7), 075015 (2009) (11) Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Ali, H., Stein, Z., Fouliard, Q., Ebrahimi, H., Warren, P., Raghavan, S., Ghosh, R.: Computational model of mechano-electrochemical effect of aluminum alloys corrosion. Journal of Engineering for Gas Turbines and Power 144(4), 041004 (2022) (9) Adam, K., Zöllner, D., Field, D.P.: 3d microstructural evolution of primary recrystallization and grain growth in cold rolled single-phase aluminum alloys. Modelling and Simulation in Materials Science and Engineering 26(3), 035011 (2018) (10) Chen, F., Cui, Z., Liu, J., Zhang, X., Chen, W.: Modeling and simulation on dynamic recrystallization of 30cr2ni4mov rotor steel using the cellular automaton method. Modelling and Simulation in Materials Science and Engineering 17(7), 075015 (2009) (11) Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Adam, K., Zöllner, D., Field, D.P.: 3d microstructural evolution of primary recrystallization and grain growth in cold rolled single-phase aluminum alloys. Modelling and Simulation in Materials Science and Engineering 26(3), 035011 (2018) (10) Chen, F., Cui, Z., Liu, J., Zhang, X., Chen, W.: Modeling and simulation on dynamic recrystallization of 30cr2ni4mov rotor steel using the cellular automaton method. Modelling and Simulation in Materials Science and Engineering 17(7), 075015 (2009) (11) Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Chen, F., Cui, Z., Liu, J., Zhang, X., Chen, W.: Modeling and simulation on dynamic recrystallization of 30cr2ni4mov rotor steel using the cellular automaton method. Modelling and Simulation in Materials Science and Engineering 17(7), 075015 (2009) (11) Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer
- Uddin, S.M., Mahmud, T., Wolf, C., Glanz, C., Kolaric, I., Volkmer, C., Höller, H., Wienecke, U., Roth, S., Fecht, H.-J.: Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites. Composites Science and Technology 70(16), 2253–2257 (2010) (8) Ali, H., Stein, Z., Fouliard, Q., Ebrahimi, H., Warren, P., Raghavan, S., Ghosh, R.: Computational model of mechano-electrochemical effect of aluminum alloys corrosion. Journal of Engineering for Gas Turbines and Power 144(4), 041004 (2022) (9) Adam, K., Zöllner, D., Field, D.P.: 3d microstructural evolution of primary recrystallization and grain growth in cold rolled single-phase aluminum alloys. Modelling and Simulation in Materials Science and Engineering 26(3), 035011 (2018) (10) Chen, F., Cui, Z., Liu, J., Zhang, X., Chen, W.: Modeling and simulation on dynamic recrystallization of 30cr2ni4mov rotor steel using the cellular automaton method. Modelling and Simulation in Materials Science and Engineering 17(7), 075015 (2009) (11) Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Ali, H., Stein, Z., Fouliard, Q., Ebrahimi, H., Warren, P., Raghavan, S., Ghosh, R.: Computational model of mechano-electrochemical effect of aluminum alloys corrosion. Journal of Engineering for Gas Turbines and Power 144(4), 041004 (2022) (9) Adam, K., Zöllner, D., Field, D.P.: 3d microstructural evolution of primary recrystallization and grain growth in cold rolled single-phase aluminum alloys. Modelling and Simulation in Materials Science and Engineering 26(3), 035011 (2018) (10) Chen, F., Cui, Z., Liu, J., Zhang, X., Chen, W.: Modeling and simulation on dynamic recrystallization of 30cr2ni4mov rotor steel using the cellular automaton method. Modelling and Simulation in Materials Science and Engineering 17(7), 075015 (2009) (11) Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Adam, K., Zöllner, D., Field, D.P.: 3d microstructural evolution of primary recrystallization and grain growth in cold rolled single-phase aluminum alloys. Modelling and Simulation in Materials Science and Engineering 26(3), 035011 (2018) (10) Chen, F., Cui, Z., Liu, J., Zhang, X., Chen, W.: Modeling and simulation on dynamic recrystallization of 30cr2ni4mov rotor steel using the cellular automaton method. Modelling and Simulation in Materials Science and Engineering 17(7), 075015 (2009) (11) Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Chen, F., Cui, Z., Liu, J., Zhang, X., Chen, W.: Modeling and simulation on dynamic recrystallization of 30cr2ni4mov rotor steel using the cellular automaton method. Modelling and Simulation in Materials Science and Engineering 17(7), 075015 (2009) (11) Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer
- Ali, H., Stein, Z., Fouliard, Q., Ebrahimi, H., Warren, P., Raghavan, S., Ghosh, R.: Computational model of mechano-electrochemical effect of aluminum alloys corrosion. Journal of Engineering for Gas Turbines and Power 144(4), 041004 (2022) (9) Adam, K., Zöllner, D., Field, D.P.: 3d microstructural evolution of primary recrystallization and grain growth in cold rolled single-phase aluminum alloys. Modelling and Simulation in Materials Science and Engineering 26(3), 035011 (2018) (10) Chen, F., Cui, Z., Liu, J., Zhang, X., Chen, W.: Modeling and simulation on dynamic recrystallization of 30cr2ni4mov rotor steel using the cellular automaton method. Modelling and Simulation in Materials Science and Engineering 17(7), 075015 (2009) (11) Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Adam, K., Zöllner, D., Field, D.P.: 3d microstructural evolution of primary recrystallization and grain growth in cold rolled single-phase aluminum alloys. Modelling and Simulation in Materials Science and Engineering 26(3), 035011 (2018) (10) Chen, F., Cui, Z., Liu, J., Zhang, X., Chen, W.: Modeling and simulation on dynamic recrystallization of 30cr2ni4mov rotor steel using the cellular automaton method. Modelling and Simulation in Materials Science and Engineering 17(7), 075015 (2009) (11) Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Chen, F., Cui, Z., Liu, J., Zhang, X., Chen, W.: Modeling and simulation on dynamic recrystallization of 30cr2ni4mov rotor steel using the cellular automaton method. Modelling and Simulation in Materials Science and Engineering 17(7), 075015 (2009) (11) Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer
- Adam, K., Zöllner, D., Field, D.P.: 3d microstructural evolution of primary recrystallization and grain growth in cold rolled single-phase aluminum alloys. Modelling and Simulation in Materials Science and Engineering 26(3), 035011 (2018) (10) Chen, F., Cui, Z., Liu, J., Zhang, X., Chen, W.: Modeling and simulation on dynamic recrystallization of 30cr2ni4mov rotor steel using the cellular automaton method. Modelling and Simulation in Materials Science and Engineering 17(7), 075015 (2009) (11) Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Chen, F., Cui, Z., Liu, J., Zhang, X., Chen, W.: Modeling and simulation on dynamic recrystallization of 30cr2ni4mov rotor steel using the cellular automaton method. Modelling and Simulation in Materials Science and Engineering 17(7), 075015 (2009) (11) Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer
- Chen, F., Cui, Z., Liu, J., Zhang, X., Chen, W.: Modeling and simulation on dynamic recrystallization of 30cr2ni4mov rotor steel using the cellular automaton method. Modelling and Simulation in Materials Science and Engineering 17(7), 075015 (2009) (11) Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer
- Herriott, C., Li, X., Kouraytem, N., Tari, V., Tan, W., Anglin, B., Rollett, A.D., Spear, A.D.: A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering 27(2), 025009 (2019) (12) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer
- Raju, N., Warren, P., Subramanian, R., Ghosh, R., Fernandez, E., Raghavan, S., Kapat, J.: Sintering behaviour of 3d printed 17-4ph stainless steel. In: Turbo Expo: Power for Land, Sea, and Air, vol. 86052, pp. 007–17028 (2022). American Society of Mechanical Engineers (13) Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer
- Van Der Giessen, E., Schultz, P.A., Bertin, N., Bulatov, V.V., Cai, W., Csányi, G., Foiles, S.M., Geers, M.G., González, C., Hütter, M., et al.: Roadmap on multiscale materials modeling. Modelling and Simulation in Materials Science and Engineering 28(4), 043001 (2020) (14) Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer
- Yan, F., Xiong, W., Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Materials 10(11), 1260 (2017) (15) Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer
- Lin, J., Balint, D., Pietrzyk, M.: Microstructure Evolution in Metal Forming Processes. Elsevier, USA (2012) (16) Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer
- Steinbach, I.: Phase-field models in materials science. Modelling and simulation in materials science and engineering 17(7), 073001 (2009) (17) Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer
- Bandyopadhyay, A., Zhang, Y., Bose, S.: Recent developments in metal additive manufacturing. Current opinion in chemical engineering 28, 96–104 (2020) (18) Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer
- Warren, P., Raju, N., Krsmanovic, M., Ebrahimi, H., Kapat, J., Subramanian, R., Ghosh, R.: Shrinkage prediction using machine learning for additively manufactured ceramic and metallic components for gas turbine applications. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, pp. 002–05023 (2022). American Society of Mechanical Engineers (19) Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer
- Raju, N., Warren, P., Subramanian, R., Ghosh, R., Raghavan, S., Fernandez, E., Kapat, J.: Material properties of 17-4ph stainless steel fabricated by atomic diffusion additive manufacturing (adam). In: 2021 International Solid Freeform Fabrication Symposium (2021). University of Texas at Austin (20) Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer
- Vayre, B., Vignat, F., Villeneuve, F.: Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13(2), 89–96 (2012) (21) Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer
- Yakout, M., Elbestawi, M., Veldhuis, S.C.: A review of metal additive manufacturing technologies. Solid State Phenomena 278, 1–14 (2018) (22) Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer
- Frazier, W.E.: Metal additive manufacturing: a review. Journal of Materials Engineering and performance 23, 1917–1928 (2014) (23) Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer
- Tan, J.H.K., Sing, S.L., Yeong, W.Y.: Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping 15(1), 87–105 (2020) (24) Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer
- Perera, R., Guzzetti, D., Agrawal, V.: Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Computational Materials Science 196, 110524 (2021) (25) Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer
- Heyn, E.: Physical Metallography. Wiley, USA (1925) (26) Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer
- Subcommittee, A.: Standard Test Methods for Determining Average Grain Size. ASTM International, USA (1996) (27) Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer
- Warren, P.: Artificial Grains and Real Grains. https://www.kaggle.com/datasets/peterwarren/voronoi-artificial-grains-gen (2023) (28) Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer
- Warren, P.: ExONE Stainless Steel 316L Grains 500X. https://www.kaggle.com/datasets/peterwarren/exone-stainless-steel-316l-grains-500x (2023) (29) Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer
- Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000) (30) Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer
- Warren, P.: SinteringTrajectory Github Repository. https://github.com/Peterwarren623/GrainBoundaryDetection (2022 (accessed Dec 16, 2022)) (31) Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer
- Canny, J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), 679–698 (1986) (32) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer
- Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) (33) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer
- O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) (34) Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer
- Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). Ieee (35) Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer
- Warren, P., Ali, H., Ebrahimi, H., Ghosh, R.: Rapid defect detection and classification in images using convolutional neural networks. In: Turbo Expo: Power for Land, Sea, and Air, vol. 84966, pp. 004–05013 (2021). American Society of Mechanical Engineers (36) Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer
- Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134), 198–287 (1908) (37) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer
- Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015). Springer