Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An approximation form of the Kuratowski Extension Theorem for Baire-alpha functions (2307.05783v1)

Published 11 Jul 2023 in math.CA

Abstract: Let $\Omega$ be a perfectly normal topological space, let $A$ be a non-empty $G_\delta$-subset of $\Omega$ and let $B_1(A)$ denote the space of all functions $A\to\mathbb{R}$ of Baire-one class on $A$. Let also $|\cdot|\infty$ be the supremum norm. The symbol $\chi_A$ stands for the characteristic function of $A$. We prove that for every bounded function $f\in B_1(A)$ there is a sequence $(H_n)$ of both $F\sigma$- and $G_\delta$-subsets of $\Omega$ such that the function $\overline{f}\colon\Omega\to\mathbb{R}$ given by the uniformly convergent series on $\Omega$ with the formula: $\overline{f}:=c\sum_{n=0}\infty\left(\frac{2}{3}\right){n+1}\left(\frac{1}{2}-\chi_{H_n}\right)$ extends $f$ with $\overline{f}\in B_1(\Omega)$ and the condition ($\triangle$) of the form: $|f(A)|\infty=|\overline{f}(\Omega)|\infty$. We apply the above series to obtain an extension of $f$ positive to $\overline{f}$ positive with the condition ($\triangle$). A similar technique allows us to obtain an extension of Baire-alpha function on $A$ to Baire-alpha function on $\Omega$.

Summary

We haven't generated a summary for this paper yet.