Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximating the Value of Energy-Parity Objectives in Simple Stochastic Games (2307.05762v1)

Published 11 Jul 2023 in cs.GT and math.PR

Abstract: We consider simple stochastic games $\mathcal G$ with energy-parity objectives, a combination of quantitative rewards with a qualitative parity condition. The Maximizer tries to avoid running out of energy while simultaneously satisfying a parity condition. We present an algorithm to approximate the value of a given configuration in 2-NEXPTIME. Moreover, $\varepsilon$-optimal strategies for either player require at most $O(2EXP(|{\mathcal G}|)\cdot\log(\frac{1}{\varepsilon}))$ memory modes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. Alternating-time temporal logic. Journal of the ACM, 49(5):672–713, 2002.
  2. Patrick Billingsley. Probability and measure. John Wiley & Sons, 2008.
  3. Approximating the Termination Value of One-Counter MDPs and Stochastic Games. Information and Computation, 222:121–138, 2013. URL: https://arxiv.org/abs/1104.4978.
  4. Optimizing the expected mean payoff in energy Markov decision processes. In International Symposium on Automated Technology for Verification and Analysis (ATVA), volume 9938 of LNCS, pages 32–49, 2016.
  5. One-Counter Stochastic Games. In Kamal Lodaya and Meena Mahajan, editors, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010), volume 8 of Leibniz International Proceedings in Informatics (LIPIcs), pages 108–119, Dagstuhl, Germany, 2010. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. Full version at http://arxiv.org/abs/1009.5636. URL: http://drops.dagstuhl.de/opus/volltexte/2010/2857, doi:10.4230/LIPIcs.FSTTCS.2010.108.
  6. Resource interfaces. In International Workshop on Embedded Software, pages 117–133, 2003.
  7. Energy parity games. In International Colloquium on Automata, Languages and Programming (ICALP), volume 6199 of LNCS, pages 599–610, 2010.
  8. Energy and mean-payoff parity Markov decision processes. In International Symposium on Mathematical Foundations of Computer Science (MFCS), volume 6907, pages 206–218, 2011.
  9. Games and Markov decision processes with mean-payoff parity and energy parity objectives. In Mathematical and Engineering Methods in Computer Science (MEMICS), volume 7119 of LNCS, pages 37–46. Springer, 2011.
  10. Perfect-information stochastic mean-payoff parity games. In International Conference on Foundations of Software Science and Computational Structures (FoSSaCS), volume 8412 of LNCS, 2014.
  11. Generalized parity games. In Helmut Seidl, editor, International Conference on Foundations of Software Science and Computational Structures (FoSSaCS), volume 4423 of LNCS, pages 153–167. Springer, 2007. URL: https://doi.org/10.1007/978-3-540-71389-0_12, doi:10.1007/978-3-540-71389-0_12.
  12. Simple stochastic parity games. In Computer Science Logic (CSL), volume 2803 of LNCS, pages 100–113. Springer, 2003.
  13. Quantitative stochastic parity games. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 121–130. SIAM, 2004.
  14. Model Checking. MIT Press, Dec. 1999.
  15. Anne Condon. The complexity of stochastic games. Information and Computation, 96(2):203–224, 1992. doi:https://doi.org/10.1016/0890-5401(92)90048-K.
  16. A pseudo-quasi-polynomial algorithm for mean-payoff parity games. In Logic in Computer Science (LICS), pages 325–334, 2018.
  17. Interface automata. ACM SIGSOFT Software Engineering Notes, 26(5):109–120, 2001.
  18. David L. Dill. Trace theory for automatic hierarchical verification of speed-independent circuits, volume 24. MIT press Cambridge, 1989.
  19. Recurrence sequences. ACM, 2003.
  20. J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer, 1997.
  21. Dean Gillette. Stochastic games with zero stop probabilities. Contributions to the Theory of Games, 3:179–187, 1957.
  22. Solving simple stochastic tail games. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 847–862, 2010. URL: http://epubs.siam.org/doi/abs/10.1137/1.9781611973075.69.
  23. Submixing and shift-invariant stochastic games. 2022. URL: https://arxiv.org/abs/1401.6575.
  24. Computing optimal strategies for Markov decision processes with parity and positive-average conditions. 2011. URL: https://hal.science/hal-00559173/en/.
  25. Marcin Jurdziński. Deciding the winner in parity games is in UP ∩\cap∩ co-UP. Information Processing Letters, 68(3):119–124, 1998.
  26. A. Maitra and W. Sudderth. Stochastic games with Borel payoffs. In Stochastic Games and Applications, pages 367–373. Kluwer, Dordrecht, 2003.
  27. Donald A. Martin. The determinacy of Blackwell games. Journal of Symbolic Logic, 63(4):1565–1581, 1998.
  28. MDPs with Energy-Parity Objectives. In Logic in Computer Science (LICS). IEEE, 2017. URL: https://arxiv.org/abs/1701.02546.
  29. Simple stochastic games with almost-sure energy-parity objectives are in NP and coNP. In Proc. of Fossacs, volume 12650 of LNCS, 2021. Extended version on arXiv. URL: https://arxiv.org/abs/2101.06989.
  30. On linear recurrence sequences and loop termination. ACM SIGLOG News, 2(2):4–13, 2015.
  31. Jakob Piribauer. On non-classical stochastic shortest path problems. PhD thesis, Technische Universität Dresden, Germany, 2021. URL: https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-762812.
  32. On Skolem-Hardness and Saturation Points in Markov Decision Processes. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, Proc. of ICALP, volume 168 of LIPIcs, pages 138:1–138:17, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.de/opus/volltexte/2020/12545, doi:10.4230/LIPIcs.ICALP.2020.138.
  33. Positivity-hardness results on Markov decision processes. 2023. URL: https://arxiv.org/abs/2302.13675v1.
  34. On the synthesis of a reactive module. In Annual Symposium on Principles of Programming Languages (POPL), pages 179–190, 1989.
  35. Supervisory control of a class of discrete event processes. SIAM journal on control and optimization, 25(1):206–230, 1987.
  36. Lloyd S. Shapley. Stochastic games. Proceedings of the national academy of sciences, 39(10):1095–1100, 1953.
  37. W. Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite trees. Theoretical Computer Science, 200(1-2):135–183, 1998.
Citations (2)

Summary

We haven't generated a summary for this paper yet.